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A Compressive Sensing Approach to Detect the
Proximity Between Smartphones and BLE Beacons
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Abstract—Bluetooth low energy (BLE) beacons have been
widely deployed to deliver proximity-based services (PBSs) to
user’s smartphones when users are in the proximity of a beacon.
Conventional proximity detection simply uses the received sig-
nal strength (RSS) to infer the proximity, and then retrieves the
PBS by mapping the beacon ID with the corresponding service in
the cloud database. Such an approach suffers two major issues:
1) the severe RSS fluctuation might confuse the smartphone dur-
ing the detection and 2) a malicious PBS can be delivered by
manipulating the same beacon ID. This paper proposes RF fin-
gerprinting to label a beacon with an N-dimensional fingerprint
vector, which consists of N RSS values from N deployed beacons.
The contribution of our proposed method is twofold: 1) we infer
the proximity based on the fingerprint vector instead of rely-
ing solely on the single RSS value and 2) we retrieve the PBS
by mapping the fingerprint vector instead of the hard-coded
beacon ID. The challenge with our proposed approach is the
incomplete fingerprint observation during real-time detection,
resulting in an underdetermined proximity detection problem.
To this end, we exploit the compressive sensing (CS) approach
based on the differential evolutional algorithm to address such
an underdetermined problem. Extensive simulations with real-
world datasets show that our proposed approach outperforms the
legacy machine learning techniques with substantial performance
gains.

Index Terms—Bluetooth low energy (BLE) beacon, compres-
sive sensing (CS), differential evolution (DE), Internet of Things,
proximity detection.

I. INTRODUCTION

D IFFERENT to location-based services (LBS) which pro-
vide services based on users’ locations [1], proximity-

based services (PBSs), on the other hand, deliver their services
to users’ smartphones when users are in the proximity of a
target item [2]. In other words, the service is delivered by
detecting the proximity between the target item and the user’s
smartphone, which is not necessarily confined to a specific
location. PBS has received a lot of interests these days follow-
ing the introduction of Bluetooth low energy (BLE) Beacons.
The active involvements of Apple and Google with their iBea-
con and Eddystone, respectively, have led to massive beacon
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deployment in many public spaces, including shopping malls,
airports, museums and the like.

In this paper, we define a thing of interest (ToI) to refer to
a target item with a beacon attached for PBS purposes. The
ToI can be either a moving item or a static item located at
a fixed location. Most of the commercial PBS applications
simply use the received signal strength (RSS) to infer the
proximity between the smartphone and the ToI. After that, the
mobile App can retrieve the corresponding service by mapping
the beacon ID with a list of PBS stored in the cloud database.
Such an approach suffers two drawbacks: 1) the always fluctu-
ating RSS can confuse the smartphone and eventually causing
false detection and 2) the hard-coded beacon ID can be manip-
ulated for a malicious service. Furthermore, these commercial
PBS applications always assume that the beacon attached with
each ToI is always working, and the smartphone is able to
receive all the signals successfully, as illustrated in Fig. 1(a).
Based on such ideal assumptions, the proximity detection can
be solved by simply identifying the beacon which contributes
the strongest RSS. However, it is very unlikely for the smart-
phone to receive all the signals in practical scenarios owing
to unpredictable signal loss and faulty beacons, as illustrated
in Fig. 1(b).

Motivated by the above limitations, this paper pro-
poses a proximity detection method with RF fingerprinting.
Specifically, we label each ToI with a fingerprint vector
� ∈ R

N , which consists of N RSS values from N beacons.
Then, the proximity detection can be solved by comparing
the similarity of the real-time fingerprint observation with a
list of fingerprint vectors in the database. The contribution
of our proposed RF fingerprinting is twofold: 1) we infer
the proximity based on a fingerprint vector instead of rely-
ing solely on the single RSS value and 2) we retrieve the
service by mapping the fingerprint with a list of PBS in the
cloud database instead of using the hard-coded beacon ID.
However, our proposed RF fingerprinting also suffers the same
issues illustrated in Fig. 1(b). The unpredictable signal loss
and faulty beacon lead to incomplete fingerprint observation,
in which the dimension of the observation vector �y ∈ R

M

is far smaller compared to the fingerprint vector � ∈ R
N

registered in the database. Such a dimensional mismatch
causes an underdetermined proximity detection problem, in
which M << N.

To this end, this paper leverages compressive sensing (CS)
approach [3] to model the underdetermined problem described
above. While some works have employed CS for target local-
ization [4], [5], to the best of our knowledge, no work exploits
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Fig. 1. Most commercial PBS applications always assume each ToI is attached with a working beacon and the smartphone is able to receive all the signals.
Such an ideal assumption is invalid in a practical scenario with frequent signal loss and faulty beacons.

CS for the proximity detection problem. Proximity detection
based on CS model is nonconvex with many local opti-
mums. To efficiently deal with the nonconvex problem, we
use correlation-based filter (CF) to narrow down the search
scope before implementing differential evolution (DE) algo-
rithm to search for the best solution. The main contributions
of this paper are summarized as follows.

1) Our fingerprint vector is constructed with higher-order
moments to better capture any statistical variations.
Furthermore, we use time average to capture the RSS
variations in the temporal domain and space average to
capture the RSS variations in the spatial domain.

2) Our proposed correlation-based filter with differential
evolution (CF+DE) is able to search for the optimum
solution in less computational time compared to legacy
machine learning techniques, while still outperforms
these techniques with high detection accuracy.

3) Our experiments were conducted with real RSS
measurements collected from a practical testbed.
Furthermore, we demonstrate the feasibility of our
approach with a real PBS use case, i.e., providing a
parking service to users when they are approaching a
parking space.

The rest of this paper is organized as follows. Section II
reviews the related works. Section III provides an empirical
analysis regarding the RSS values measured from all the bea-
cons. A statistical fingerprint construction is then proposed
in light of the empirical observation. Section IV leverages
CS approach to model the proximity detection problem,
and deduces a multiobjective function subject to the spar-
sity constraint. Section V presents our proposed CF+DE.
Section VI describes our experiments and discusses the results.
Section VII demonstrates the feasibility of our proposed
approach with a practical implementation in a multistorey car
park setting. Section VIII concludes this paper.

II. RELATED WORKS

Proximity detection is a method that uses wireless tech-
nologies to infer if two devices are in proximity to each
other [6]. While RFID has been a prominent technology for

proximity detection [2], [7], Bluetooth technology has emerged
as another best wireless technology for proximity detection in
consequences with the pervasive use of Bluetooth in smart-
phones. Many works have leveraged Bluetooth technology to
detect the proximity between human [8]–[10] and to encour-
age proximity-based sharing and interaction [11], [12]. In
general, these works infer the proximity by estimating the
signal strength and the communication distance between two
smartphones. None of them study the proximity between a
smartphone to a physical thing in a particular space.

Recently, BLE beacon has been introduced to promote
Internet of Things development using proximity detection [13].
Many commercial applications have started to adopt beacon
to boost their applications’ service. For example, beacons
have been used in retail stores such as Walmart and Tesco
to provide the consumers the details about a certain prod-
uct [14]. Beacon also has been used in the art gallery/museum
to assist visitors in browsing their favorite artworks and pro-
moting further interaction [15], [16]. The simplest way to
detect the proximity between a beacon and smartphone is by
measuring the RSS values [17]. These RSS values can be mea-
sured by a smartphone equipped with Bluetooth connectivity.
Furthermore, many beacon manufacturers have provided their
software development kits (SDKs) freely to escalate the appli-
cation development. Most of these SDKs offer a peak detection
(PD) technique to infer the proximity. That is, a smartphone
is considered to be in proximity with beacon A when beacon
A returns a higher RSS than beacon B. Such a naive approach
fails to consider the possible false detection owing to the signal
fluctuation and faulty beacon.

A number of works have been proposed to enhance the accu-
racy of using beacon for PBS [18] While there are a number of
works exploiting RF fingerprinting approach for localization
purposes [19], [20], there is no work employs RF fingerprint
for proximity detection. Despite the application purposes of
using RF fingerprinting, RF fingerprinting generally suffers
from the same drawbacks. First, the fingerprinting process is
labor intensive and required frequent calibration to maintain
the database [21], [22]. Second, the real-time fingerprint obser-
vation is always incomplete, resulting in an underdetermined
proximity detection problem.
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Fig. 2. BLE beacon by WuXi Ghostyu Electronics Company, Ltd. [Online].
Available: http://ghostyu.com.

III. BLUETOOTH LOW ENERGY BEACON

BLE is a wireless technology operates in 2.4-GHz ISM
band. BLE defines a total of 40 channels with 2-MHz spac-
ing between each adjacent channel. BLE beacon only uses
three channels, that is channels 38–40 which are strategically
allocated to avoid interference with WiFi signals [23], [24].
According to the BLE specifications, there are four modes
of a BLE device as a central, a peripheral, an observer, or
an advertiser. BLE beacon generally works as an advertiser
or a peripheral. A beacon in an advertiser mode is noncon-
nectable and is designed to broadcast its packet according
to the predefined advertising interval Ta; whereas a bea-
con in a peripheral mode is connectable which can accept
connection request upon receiving a response (known as
scanResponse) from the receiver. BLE beacons have been
widely deployed in many public locations for proximity detec-
tion and interaction [17]. Furthermore, BLE beacons are
the potential infrastructure for RF fingerprint in compari-
son to the WiFi access points, as proven by Faragher and
Harle [19]. Specifically, the small form factor of BLE bea-
con, as shown in Fig. 2 allows the beacon to be deployed in a
remote area which is not easily accessible by the commodity
WiFi device.

As discussed, the beacon broadcast their advertising packet
periodically according to Ta. The advertising packet is a
packet which can be formatted according to a certain protocol
data unit (PDU). There are two very popular PDUs: iBeacon
from Apple1 and Eddystone from Google.2 iBeacon allocates
2 bytes major and 2 bytes minor as the identifier, whereas
Eddystone allocates at least 20 bytes for their Eddystone
frame. Generally, these two PDUs provides a set of design
rules for the developer to hard-coded the beacon with a fixed
identifier. The corresponding service can be retrieved by map-
ping the identifier with a list of services stored in the online
database.

RSS value can be measured by the receiver upon receiv-
ing the packet. In general, RSS values always suffer severe
fluctuations due to various environmental factors, such as shad-
owing and multipath [25], [26]. This section first provides an
empirical analysis regarding the RSS values measured by a
smartphone at multiple positions around the same ToI and then
presents our fingerprint vector constructed with higher-order
moments to better capture the statistical variations observed
from the empirical analysis.

1“iBeacon for Developers.” [Online]. Available: https://developer.apple.
com/ibeacon/

2“Eddystone.” [Online]. Available: https://developers.google.com/beacons

Fig. 3. Smartphone was placed at five different positions indicated by the
“x” marker to measure the RSS values.

A. Variations of Received Signal Strength

The RSS value is a measurement in dBm scale [i.e.,
Pr,(dBm) = 10 log([Pr,(watt)]/1 mW)], ranging from −20 to
−90 dBm subject to the distance between the beacon and
the smartphone. According to the inverse square law, RSS
is inversely proportional to the square of distance (i.e., Pr ∝
d2 [27], [28]). Hence, conventional proximity detection always
infers the proximity between the smartphone and the ToI by
identifying the ToI which contributes the strongest RSS. Such
an intuition is valid if and only if: 1) the smartphone can mea-
sure all the RSS values from all of the beacons and 2) the RSS
values from each beacon are distinguishable. However, RSS
is proven to be unreliable and subject to heavy fluctuations
owing to multipath and shadowing effects [29], [30].

We conducted an experiment to investigate the RSS fluc-
tuations with respect to time and space. The experiment was
conducted in a controllable manner by strategically placing
the smartphone at five different positions around the same
ToI, as depicted in Fig. 3. We performed the experiment at
around midnight to minimize the external noise such that we
can observe the inherent nature of RSS fluctuations rather than
fluctuations caused by external factors.

Fig. 4 shows the RSS values measured by the smartphone
from 0 to 150 s at the five positions. By examining the five
graphs horizontally at any fixed position, we can see that
the RSS values vary across the temporal domain, whereas by
examining the five graphs vertically at any fixed time, the RSS
values vary across the spatial domain. Hence, it is unreliable
to detect the proximity by relying solely on the RSS values
because the smartphone might make a false detection when
the RSS values from the target ToI drop below the RSS values
from the adjacent ToIs.

B. Fingerprint Construction Based on Higher-Order
Moments

Let B = {1, 2, . . . , j, . . . , N} be a set of beacons attached
with N ToIs, then a fingerprint vector � ∈ R

N can be con-
structed by averaging the RSS values measured from all the
N = |B| beacons during the deployment phase. Specifically,
the fingerprint vector for jth ToI can be expressed as follows:

�j =
(
φ

(j)
1 φ

(j)
2 . . . φ

(j)
i . . . φ

(j)
N

)T ∀j ∈ B
(1)
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(a)

(b)

(c)

(d)

(e)

Fig. 4. It is obvious that the RSS values vary across time regardless of the
positions. By examining the RSS values from positions 1 to 5 at any fixed
time, we can see that the values also changing across different positions.

and φi = (1/a)
∑ta

t=t1 P(i)
r (t) is the time average RSS mea-

sured from ith beacon. P(i)
r (t) denotes the received power in

dBm, measured at discrete time ta for all ta ≤ Ts and Ts is the
scanning duration. Note that Ts is not fixed during fingerprint
registration, instead we perform the scanning continuously
until sufficient signals are sampled.

Note that (1) describes the common RF fingerprinting
approach employed by most prior works [19], [31], [32].
However, from the previous experiment, we observe that the
RSS always fluctuates even though the smartphone remained
stationary at a fixed location. Furthermore, the smartphone is
still considered to be in proximity with ToI 1 regardless of
the different positions of the smartphone to the ToI 1, as illus-
trated with the red “x” marker in Fig. 3. In other words, the
RSS variations happen across temporal and spatial domains.
In light of the above observations, we construct the finger-
print vector with both time and space average. Furthermore,
the RSS distribution does not follow the Gaussian distribution,
as shown in Fig. 5, rather it is skewed to the right or left in
connection to the positions of where the RSS is measured.
Hence, we also introduce third and fourth order moments in
constructing the fingerprint vector.

Fig. 5. RSS distribution does not follow the Gaussian distribution exactly.

In fact, the moment-based approach has been adopted
in many research fields to address the noise issue caused
by multipath, shadowing and other environmental fac-
tors [33]–[35]. Cardoso [36] suggested that higher-order
moments can better discriminate each individual source, such
a discrimination feature is indeed beneficial for the ToI detec-
tion. Hence, we further refine the conventional fingerprint
vector described by (1) with the following fingerprint matrix
�j ∈ R

N×5:

�j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ
(j)
1,1 φ

(j)
1,2 φ

(j)
1,3 φ

(j)
1,4 φ

(j)
1,5

φ
(j)
2,1 φ

(j)
2,2 φ

(j)
2,3 φ

(j)
2,4 φ

(j)
2,5

...
...

...
...

...

φ
(j)
i,1 φ

(j)
i,2 φ

(j)
i,3 φ

(j)
i,4 φ

(j)
i,5

...
...

...
...

...

φ
(j)
N,1 φ

(j)
N,2 φ

(j)
N,3 φ

(j)
N,4 φ

(j)
N,5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∀j ∈ B (2)

where the first column of �j is the time average vector similar
to (1), the second column (φi,2) represents the space average
vector, the third column (φi,3) the variance vector, the fourth
column (φi,4) the skew vector, and the fifth column (φi,5) the
kurtosis vector. To facilitate the CS formulation described in
the later section, we further flatten the above matrix into a
kN-dimensional fingerprint vector, where k = 5.

Furthermore, we also introduce a dynamic fingerprint updat-
ing mechanism for the case when a new ToI is added to the
system, as illustrated in Fig. 6. Initially, all the fingerprints
were registered at a few random positions around the ToI when
it is first deployed. After that, we can update the fingerprint
from time to time when we are confident about the detection
output. More precisely, we use confidence interval to deter-
mine how confident we are regarding the detection output, and
only update the fingerprint matrix when the confidence level
of the detection output is more than the minimum confidence
threshold (γ ). Based on the RSS measurements acquired dur-
ing the detection phase, the space average can be updated as
follows:

φi,2 =
{

φi,1(r = 1) + 1
a

∑ta
t=t1 P(i)

r (t, r), if φi,2 = φi,1

φi,2 + 1
a

∑ta
t=t1 P(i)

r (t, r), if φi,2 �= φi,1
(3)

where r is the random position of the smartphone around the
ToI and r = 1 refers to the initial position during the finger-
print registration. Similarly, the variance, skew and kurtosis
are updated accordingly.
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Fig. 6. Fingerprint is registered when a ToI is deployed, and dynamic update will be performed from time to time to capture the measurement variations.

IV. PROBLEM FORMULATION

Proximity indicator vector b is defined to indicate the
proximity of the smartphone to the ToI. Conventionally the
proximity vector is an N dimensional one-sparse vector, i.e.,
the vector consists of only one nonzero entry indicating the
proximity of the smartphone to the ToI. However, our proposed
fingerprint is an kN dimensional vector by flattening the N ×k
matrix described in (2). Hence, we define a k-sparse proxim-
ity indicator vector b ∈ R

kN , which consists of k number of
nonzero entries. This section presents our k-sparse problem
formulation based on CS theory.

A. k-Sparse Problem

Proximity detection is a process for detecting the target
ToI given the observation vector �y ∈ R

kM (i.e., fingerprint
observed during detection phase). Suppose there are N reg-
istered fingerprints in the database, we can define a matrix
� ∈ R

N×kN by appending the fingerprint matrix described
in (2). Then, the proximity detection problem can be described
as follows:

�y = �b + v (4)

where v is the measurement noise. Note that the above equa-
tion is only valid when the dimension of the observation vector
�y is the same as the number of columns in �, i.e., kM = kN.

However, the dimension of �y is always much smaller, i.e.,
kM << kN, in consequences to the incomplete observation
during the detection phase. In other words, the smartphone
is only able to measure the RSS values from a portion of
beacons. While it is possible to increase the scanning dura-
tion to ensure that the smartphone can measure RSS values
from all of the deployed beacons, it is impractical for most
PBS applications which require real-time service delivery. The
other approach, which has been widely used by most machine
learning techniques such as kNN, is to assign an artificial low
RSS value to the missing element. However, such an approach
is dangerous when the artificial RSS value cannot reflect the
true RSS value.

In this paper, we exploit CS theory to deal with such an
underdetermined problem. Let D = {j : f (j) = 1, j ∈ B} be a
set of indices indicating the beacons which can be observed
by the smartphone during the detection phase, and f (·) is the
mapping function in which f (j) = 1 when j ToI has a working
beacon attached, otherwise f (j) = 0. Then, a sparsify matrix
� ∈ R

M×N can be deduced as follows:

� = (
c1 c2 · · · cM

)
(5)

where ci = (f (1) = 0, . . . , f (i) = 1, . . . , f (N) = 0)T , ∀i ∈ D
and the element f (i) = 1 if i = Di and 0 otherwise.

Given the sparsify matrix �, the N × kN matrix � can be
reduced to a M × kN matrix, i.e.,

�̃ = �� (6)

Now, the proximity detection problem �y = �̃b + v is still
a valid problem even though kM << kN. In our previous
work [37], the proximity indicator vector b ∈ R

N is a one-
sparse vector, i.e.,

b{N×1} = (
0 0 . . . 1 . . . 0 0

)T (7)

where the entry with value 1 indicates the proximity of the
smartphone to the target ToI. Note that 1 is an ideal value of
which we are very confident with the detection output. For the
general case, the nonzero value is within the interval of (0, 1].
In this paper, our fingerprint is constructed with higher-order
moments [defined by k columns in (2)], hence, we extend the
one-sparse proximity indicator vector to k-sparse, i.e.,

b{kN×1} = (
0 0 . . . x1 x2 . . . xk . . . 0 0

)T

=
({

x(1)
{k×1}

}
. . .

{
x(j)
{k×1}

}
. . .

{
x(N)
{k×1}

})T

(8)

where b ∈ R
kN is a k-sparse vector with all elements being

zeros excepts for the k number of entries matching to the five
columns of the fingerprint matrix described in (2). In other
words, b is a concatenation of N number of vectors x ∈ R

k,
in which N − 1 of them should be zero vectors.
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For an ideal case with no temporal variation, the only
nonzero vector x should have 1 at its first entry, i.e., x =
(1 0 0 0 0), which indicates an exact match. However,
such an ideal case is very unlikely considering the uncer-
tainties imposed by both temporal and spatial variations. For
the practical case, the vector x might consist of k number
of nonzero values which leads to a k-sparse problem. Since
k is far less than N, which satisfies the condition required
by CS, then the k-sparse problem can be solved with a very
high probability. Mathematically, the k-sparse problem can be
formulated as follows:

b̃ = arg min ‖b‖0, s.t.
∥∥∥�y − �̃b

∥∥∥
2

2
< ε. (9)

Remark 1: CS theory [3] states that as long as the size
of the real-time fingerprint observation �y ∈ R

kM is greater
than ck log(N), i.e., M >= ck log(N), then the optimization
problem defined by (9) can be solved uniquely with high prob-
ability. Since k = 5 in our case, a unique solution b̃{kN×1} can
be obtained when kM is at least 5 × 4 = 20 for N ≤ 100.

Remark 2: According to the restricted isometric property
(RIP) [38] defined as follows:

(1 − δk)‖b‖2
2 ≤ ‖�b‖2

2 ≤ (1 + δk)‖b‖2
2 (10)

where δ ∈ (0, 1], then we can argue that there exists a
unique solution b̃{kN×1} when the Euclidean norm of b̃{kN×1}
is preserved under the action of the measurement matrix �.
In other words, the Euclidean norm of the observation vector
�y ∈ R

kM = �b should be very similar to the Euclidean norm
of b, with acceptable variation δ.

B. Constrained Multiobjective Model

Given the incomplete observation vector �y, our objective is
to search for the vector b such that the resultant nonzero vector
x has its x1 maximized while minimizing the summation of x2
to xk. To ensure ỹ can be retrieved with high probability, we
define a multiobjective function to model the k-sparse problem
and impose a constraint on those k elements in nonzero vector
x. The intuition here is that the estimated k-sparse vector b̃
should have its first nonzero entry closely approximate to
the fingerprint registered during the initial deployment phase
with minimum measurement variation. If the nonzero vector x
reflects a large measurement variation, it is very likely that the
ToI indicated by b might not be the target ToI we are looking
for. Mathematically, the multiobjective problem is defined as
follows:

b̃ = arg min
b

‖�y − �̃b‖2
2 + λ‖b‖1

x̃ = arg max
x

|x1 −
5∑

k=2

xk|2

s.t.
∥∥∥�y − �̃b

∥∥∥
2

2
< ε

5∑
k=1

xk = 1, xk ∈ [0, 1] (11)

where λ is the regularization parameter. To retrieve the index
of the target ToI ỹ, we multiply b̃ with a k-shrinking matrix

S ∈ R
5N×N , in which each row of S consists of k numbers of

ones at the entry of i = j up to i = j + k − 1. The rests are
all 0s

sij =
{

1, i = j + k − 1
0, otherwise

(12)

where k varies from 1 to 5. Then, ỹ can be retrieved as follows:

ỹ = B × round
(
S̃b

)
. (13)

Note that finding an optimal solution given (11) can take years
since there are many possible solutions. In the next section,
we present our CF to narrow down our search scope and use
DE to search for the optimal solution heuristically.

V. PROPOSED CORRELATION-BASED FILTER WITH

DIFFERENTIAL EVOLUTION

This section first describes CF before putting forward the
logic flow of DE.

A. Correlation-Based Filter

This paper considers the relationship between the obser-
vation vector �y and all the fingerprint matrices stored in
the database by computing the correlation between �y and
the mean of the first and second column of the registered
fingerprint matrix. Mathematically, the correlation between
�y ∈ R

M and �j ∈ R
N×5 can be described as follows:

ϒj = corr
(
�y, �̈j

)
(14)

where �̈j consists of the mean values of all the elements in
first and second column of �j which is further conditioned on
the sparsify matrix �, i.e.,

�̈j = 1

2
�{M×N}

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

φ
(j)
1,1

φ
(j)
2,1
...

φ
(j)
N,1

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

φ
(j)
1,2

φ
(j)
2,2
...

φ
(j)
N,2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

. (15)

The resultant ϒj ranges between −1 and 1, with ϒj = 1
indicates an exact match to the fingerprint registered by jth ToI.
By computing the correlation for all ToIs, we have a correla-
tion vector ϒ = (

ϒ1 ϒ2 . . . ϒj . . . ϒN
)T

, ∀j ∈ B.
Then, the set of ToI’s indices to be filtered can be formulated
as follows:

F = {
j : ϒj < 0,∀j ∈ B}

. (16)

Furthermore, the fingerprints which belong to F are excluded
from the matrix �, and thus we obtain a filtered matrix �̂ as
follows:

�̂ = {
�j : ∀j ∈ B \ F}

(17)

where B \ F denotes all the indices in B except those in F .
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Fig. 7. General flow of DE to search for the optimal k-sparse proximity indicator vector.

B. Differential Evolution

Given the filtered matrix �̂, the relation between �y and b
described in (4) is further refined to �y = �̂b̂ + v. For the
purpose of the matrix operation, the proximity indicator vector
b needs to be confined to b̂ such that its height equals to the
length of �̂. We can apply the same filter operation on b̂, i.e.,

b̂ = {
xj : ∀j ∈ B \ F}

. (18)

The resultant b̂ is illustrated in Fig. 7 with the shaded blocks
indicating the filtered vector x.

Given the filtered output b̂ and �̂, DE iteratively search for
the optimal nonzero vector x which best fits the multiobjective
function described in (11). The intuition behind DE is to search
for the survivor (the fittest solution) from the current popula-
tion, and others which fail to survive will continue to evolve to
the next generation. The basic idea is borrowed from the gen-
eral concept of evolutionary programming [39], [40], and we
further extend DE by considering the best planet that provides
a better habitat for the survivors.

Referring to Fig. 7, three children are initialized randomly
from the population b̂, i.e., xα , xβ , and xγ . In contrast to
most conventional matching pursuit algorithms, which tries
to match the observation to every single column in the mea-
surement matrix; DE picks any three random solutions and
processes them in parallel to locate the survivor. Furthermore,
DE returns the solution immediately once the solution con-
verges. To ensure unit length, we imposed a normalization
onto each child

xu = x2
u

1∑5
k=1 xu

2
k

∀u = {α, β, γ }. (19)

The target child xα at the current generation G can be chosen
with the following operation:

[
x(G)
α , ρ(G)

α

]
= max

u,j∈B̂
(
xT

u �j
)

(20)

where B̂ ⊆ B is the filtered set of indices. Another variable
returned by (20) is the best planet to accommodate the x(G)

α .
We denote this best planet at the current generation as ρ

(G)
α .

The other two children which are not chosen at the current
generation (i.e., x(G)

β and x(G)
γ ) are then subject to the following

evolution.
1) Mutation: Gene alteration is imposed by multiplying the

difference between x(G)
β and x(G)

γ with a mutation ratio
and then adding it up with the target child to form a
donor gene. Mathematically, the mutation phase can be
expressed as follows:

x(G)
ζ = x(G)

α + M
(

x(G)
β − x(G)

γ

)
(21)

where M is the mutation ratio ranging from 0 to 2
according to [41].

2) Crossover: The resultant donor gene is exchanged with
the target child according to a predefined crossover rate
to produce an evolved child. Specifically, when the ran-
domly generated number is equal or greater than the
crossover rate, then the evolved child inherits the gene
from x(G)

ζ ; otherwise, the evolved child inherits the gene
from x(G)

α . In general, a crossover vector O ∈ R
k which

consists of only 1s or 0s subject to the random gener-
ated number and the crossover rate can be obtained as
follows:

oi =
{

1, Ri(n) ≥ C
0, Ri(n) < C ∀i ∈ [1, K] (22)

where Ri(n) is the random number generation function
for element i. The evolved child based on the crossover
vector O can be produced as follows:

x(G)
ϑ = OTx(G)

ζ + O′Tx(G)
α (23)

where O′ is the complement vector to those elements
in O.

The evolved child is then compared to the target child using
the similar operation described in (20). According to Fig. 7,
the survivor which defeats its peers will continue its journey
to the next generation. Mathematically, the survivor is selected
as follows: [

x(G+1)
� , �

]
= max

j∈B̂
({

xT
α�j

}
,
{
xT
ϑ�j

})
(24)
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Fig. 8. Classroom testbed with nine equally spaced beacons was used for
data collection purposes.

where � denotes the best planet for the current survivor to
settle. Suppose that the best survivor x� across several gener-
ations is found, then the estimated proximity indicator vector
b̃ can be concluded to

b̃ =
{

xT
1 , xT

2 , . . . , xT
j , . . . , xT

N

}
=

{
xj = 0, if j �= �

xj = x�, if j = �
(25)

where 0 ∈ R
k is the zero vector. Given the estimated b̃ ∈

R
kN, the index of target ToI ỹ can be retrieved via the same

operation, as described in (13).

VI. PERFORMANCE EVALUATION

We performed our experiment with real-world dataset col-
lected from different environments. The testbed for data collec-
tion and the corresponding experimental results are discussed
in Sections VI-A and VI-C, respectively.

A. Experimental Testbed

Rather than generate the signals artificially, we collected
real RSS values from different environments with different set-
tings at different times. In particular, a few empty classrooms
were used as the testbeds. The testbed setting consists of nine
equally spaced beacons, as shown in Fig. 8. Note that such
a classroom setting is generic and applicable to diverse PBS
use cases. All the RSS values contributed by all the beacons
were collected with an Android-based smartphone (i.e., Asus
Zenphone Deluxe). In each ToI, approximately 1000 RSS val-
ues from each beacon were measured. We repeated the same
measurement at five different positions around the same ToI
resulting in more than 5000 data from each ToI. Similar steps
were repeated in all the nine ToIs, which contributes to a total
of > 45k data.

TABLE I
PERFORMANCE COMPARISON BETWEEN OMP AND COSAMP

B. Baseline Algorithms

Three commonly used algorithms for proximity detection
problem are chosen as baselines.

1) Peak Detection: This straight forward approach is
offered as a free open source SDK by many beacon manu-
facturers to fasten the development cycle of PBS applications.
As its name implies, PD examines the observation vector �y,
and returns the element that contributes the strongest RSS.
Mathematically, we can find the index of the target ToI by
computing ỹ = arg maxφi,y∈�y

�y, where φi,y is the time aver-
age RSS measured from the beacon attached with ith ToI
during the scanning duration Ts.

2) kNN-Based Fingerprinting: Having constructed the
radio map (i.e., the matrix consists of only the RSS val-
ues), this machine learning technique selects the top k ToIs by
computing the Euclidean-based similarity between the obser-
vation vector �y to all the RSS-based fingerprints registered
in the radio map �R [42], [43]. Since the height of vector
�y might not be equal to the length of the radio map �R,
the empty element of �y, if any, is assigned with an artificial
RSS value, i.e., φi,y = {−100 : i ∈ B ∨ φi,y = ∅}. Now, given

�R =
(
�1
R �2

R . . . �
j
R . . . �N

R
)

∈ R
m×N and

�y ∈ R
m, the index of the target ToI ỹ can be computed with

ỹ = arg minj∈B ‖�y − �
j
R‖2

2.
3) Compressive Sampling Matching Pursuit: Two of the

most widely used approaches in CS framework are orthogo-
nal matching pursuit (OMP) [44] and compressive sampling
matching pursuit (CoSaMP) [45]. Both OMP and CoSaMP are
greedy algorithms which search for the sparse solution itera-
tively. Table I compares the experimental results between OMP
and CoSaMP. In this experiment, we used a small subset of
data from the testbed illustrated in Fig. 8, and randomly dis-
carded the some beacons’ signals to emulate the phenomenon
of incomplete observations. We performed the experiments for
1370 times for data collected at different ToI and computed
the average results. It is clear that CoSaMP achieves better
performance than OMP in terms of detection performance
and runtime. Hence, we choose CoSaMP as a baseline algo-
rithm to compare with our proposed CF+DE. The general flow
of CoSaMP is as follows: first, CoSaMP transforms ��R
into an orthonormal basis, i.e., Q = orth(��RT)T , and then
imposes a signal preprocessing operator T = Q(�y)

† to trans-
form the observation vector, i.e., �′

y = T�y. Based on the
orthonormal basis Q and transformed observation vector �′

y,
the k-sparse proximity indicator vector can be estimated. Note
that in our case, the sparsity level k is known. Hence, CoSaMP
can be applied to obtain b efficiently. In case k is unknown,
Candes and Wakin [3] suggested that we can use a phase
transition analysis method to estimate the unknown k.
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(a) (b)

(c) (d)

Fig. 9. Detection performances of PD, kNN-F, CoSaMP, and CF+DE when all the attached beacons are working perfectly.

TABLE II
DETECTION PERFORMANCE OF EACH APPROACH

C. Experimental Results

We first evaluate the detection performance when all the
beacons are working correctly, but the RSS values var-
ied across the temporal and spatial domains. The detection
performance of each approach is presented with a confusion
matrix, as shown in Fig. 9. The x-axis is the target ToI and the
y-axis indicates the detected ToI. Hence, the diagonal elements
indicate a correct detection. The overall precision, recall, and
accuracy achieved by each approach are further summarized
in Table II. While most approaches were able to return a high
detection performance, our proposed CF+DE outperforms the
rest with an average of 90.11% accuracy.

Next, a few beacons were intentionally shut off to emulate a
scenario with faulty beacons. Fig. 10(a)–(c) illustrates the three
scenarios with different faulty beacons. The same measuring
procedures were repeated for all scenarios, resulting in a total

of > 135k data. The detection performances reported by the
baselines and our proposed CF+DE are described below.

1) Scenario 1: Fig. 11 shows that PD only works when
the ToI is attached with a working beacon. It suffers severe
performance degradation when the attached beacons are not
working. Even though both kNN-based fingerprinting (kNN-F)
and CoSaMP are comparatively better than PD, their detection
accuracy, however, is still below average. CF+DE, on the other
hand, achieves a good detection performance with more than
80% precision and recall, on average.

2) Scenario 2: Again, Fig. 11 shows that PD fails to pro-
duce a correct detection at those ToIs without an attached
beacon (i.e., ToIs 2, 4–6, and 8). The performances of both
kNN-F and CoSaMP are still below average; whereas CF+DE
achieves a very good performance with above 70% precision
and recall at those ToIs without a working beacon attached
and above 90% in the ToIs with a working beacon attached.

3) Scenario 3: When only three ToIs are attached with a
working beacon, the detection performance of both CoSaMP
and kNN-F degrades severely. On the other hand, Fig. 11
shows that our proposed CF+DE is still able to maintain
its detection performance. This indicates that CF+DE is
robust and can guarantee a reliable detection performance even
though the number of faulty beacons increases.

4) Unpredictable Scenario: Practically, the attached bea-
cons might stop working at an unexpected time. Furthermore,
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Fig. 10. Three different scenarios to illustrate the faulty beacons attached with (a) ToIs 2, 4, 6, and 8, (b) ToIs 1, 3, 7, and 9, and (c) ToIs 1, 5, and 9.

(a) (b)

Fig. 11. Detection performances of PD, kNN-F, CoSaMP, and CF+DE for all three scenarios illustrated in Fig. 10. (a) Precision. (b) Recall.

Fig. 12. Cumulative distribution of the detection error.

due to various environmental factors, such as a change in
weather, or the movement of the human body, might affect
the signal reception rate in the smartphone. All these fac-
tors lead to an unpredictable scenario, i.e., at a certain point

in time, the ToI which gives stable signals might appear to
be unavailable at another time. To better capture all these
uncertainties, we performed another simulation by randomly
discarding some beacons’ signals. The detection errors pro-
duced by each approach is computed, and the results are shown
in Fig. 12. Clearly, our proposed CF+DE outperforms the rest
with very low detection error, i.e., < 0.15 error for > 90% of
the time.

VII. PRACTICAL IMPLEMENTATION

This section presents a practical implementation in a mul-
tistorey car park setting. We performed two experiments:
first experiment consists of 18 beacons attached to 18
known ToIs (i.e., the parking lots) and second experiment
consists of the same 18 ToIs plus some randomly added
unknown ToIs.
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Fig. 13. Detection performance of each approach for the car park scenario illustrated in Fig. 14.

Fig. 14. Practical experiment with 18 ToIs deployed in a multistorey car
park space.

A. Fixed ToIs With Parking Lots

Fig. 14 depicts the deployment of the 18 ToIs. Each ToI rep-
resents a parking lot, in which each parking lot is designated
with a specific service. For example, one parking lot might
contain the details of a reservation or provide an interactive
service for the driver to pay for the parking fee if it is avail-
able. Each beacon was configured to broadcast their signals
at an interval of 100 ms. An Android-based smartphone was
implemented with our proposed CF+DE as well as the other
three baseline approaches for on-the-spot experiments. We per-
formed the detection from one parking lot to another in a
descending sequence. The same experiment was repeated 20
times by intentionally shutting off the beacons attached to ToIs
3, 8, 11, and 18. The detection outputs were recorded; given
the detection outputs, the detection accuracy is computed and
the results are plotted in Fig. 13.

From Fig. 13, it is obvious that PD fails to provide cor-
rect detection at ToIs 3, 8, 11, and 18. However, the other

three approaches are still able to detect these four ToIs even
when their attached beacons were not working. On average, the
detection accuracies for PD, kNN-F, CoSaMP, and CF+DE are
71.92%, 75.94%, 81.20%, and 92.43%, respectively. Clearly,
our proposed CF+DE outperforms the rest with very high
detection accuracy, such a significant performance is even
more obvious in those ToIs without a working beacon attached.

B. Randomly Added ToIs

With the same set of 18 beacons in the multistory car park
space, we randomly added a few beacons from time to time.
The added beacons will increase the size of the observation at
the smartphone. These random beacons are assumed to attach
with unknown ToIs. This is valid for many practical scenarios
where ToI can be any moving object. In a car park space, for
example, we might have cars coming in and out, and some
cars might be attached with some beacons for personalized
private service. One example is that Tesla car has installed a
beacon to provide automatic car unlock service to the owner
when the owner approaching their own car. The main objective
in this experiment is that can we still detect the same 18 fixed
ToIs in the presence of random and unknown ToIs. Note that
the presence of unknown ToIs will increase the size of the
observation vector and possibly confuse the detection process.

In this experiment, we first examined the algorithms’ run-
time and then evaluate their detection performance. In general,
we logged the timestamp when the smartphone starts the detec-
tion process and also the timestamp when the detection output
is returned. Based on these starting and stopping timestamp,
the runtime can be computed. Similarly, we logged the detec-
tion output in every step. All the information is stored in the
local smartphone storage as a “.csv” file.

1) Algorithms’ Runtime Versus M: In general, CoSaMP
requires more computation in comparison to the other three
algorithms; whereas PD requires the least computation.
Fig. 15(a) shows the runtime of the four algorithms. Even
though our proposed CF+DE has a longer runtime compared
to kNN-F and PD, it is still faster than CoSaMP. Furthermore,
CoSaMP shows an increment on runtime when the size of
the observation vector increases from 0 to 10. However,
our CF+DE has maintained a consistent runtime (i.e., about
2.148 μs in average) regardless of the size of the observation.

2) Detection Accuracy Versus M: Even though the run-
time of PD is the fastest compared to the rest, as shown in
Fig. 15(b), it failed to return a good detection performance
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Fig. 15. (a) Runtime of each algorithm with respect to the observation’s size. (b) Detection accuracy with respect to the observation’s size.

when there is not enough observation for its to detect the clos-
est ToI. Furthermore, the unpredictable RSS fluctuations may
also confuse PD in making the right detection when the size
of observation increases. On the other hands, our proposed
CF+DE achieves very good performance even when the size
of the observation is very small. The detection performance
increases when the size of the observation increases. In partic-
ular, CF+DE achieves at least 80% accuracy when M = 10;
whereas CoSaMP requires at least M > 18 to achieve similar
performance.

While the increment of the observation might due to the
presence of the unknown ToIs, the observation contributed
by these unknown ToIs can, in fact, provide some use-
ful information to narrow down the search space, and thus
increase the detection performance. Intuitively, when there are
more observations, we can have more linear equations and thus
reducing the vagueness of those unknown coefficients. In other
words, if our algorithm can solve the unknown coefficients
with least number of linear equations with high probability,
then our algorithm can definitely perform much better when
it is provided with more linear equations.

VIII. CONCLUSION

This paper exploits CS approach to address the underdeter-
mined proximity detection problem. More specifically, given
an incomplete observation, our goal is to search for a prox-
imity indicator vector which helps the smartphone to identify
the target ToI. To ensure fast and reliable detection, this paper
proposes a CF+DE to first narrow down the search scope
before searching for the optimal solution. Extensive experi-
ments with real-world data show that our proposed CF+DE
outperforms other common algorithms [including the algo-
rithms widely used by commercial applications (PD), machine
learning (kNN), and other CS-based problems (CoSaMP)]. A
real implementation in a multistorey parking space demon-
strates the feasibility of our proposed approach for diverse
practical PBS use cases involving smartphones and physical
objects/spaces.
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