
9572 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 6, DECEMBER 2019

Denoising-Contractive Autoencoder for Robust
Device-Free Occupancy Detection

Pai Chet Ng , Student Member, IEEE, and James She, Member, IEEE

Abstract—Device-free occupancy detection is very important
for certain Internet of Things applications that do not require
the user to carry a receiver. This paper achieves the device-
free occupancy detection with RF fingerprinting, which labels
each zone with a 2M-dimensional fingerprint vector. Specifically,
the fingerprint vector consists of received signal strength (RSS)
values measured from M Bluetooth low energy (BLE) beacons
and also their corresponding temporal RSS variations. However,
the unreliable RSS values caused two common issues with the
fingerprint vector: 1) noise and 2) sparsity. To this end, we pro-
pose denoising-contractive autoencoder (DCAE) to jointly deal
with these two issues, by learning a robust fingerprint prior to
device-free occupancy detection. We validate the performance
of our proposed DCAE with large-scale real-world datasets. The
experimental results indicate the substantial performance gain of
our proposed DCAE in comparison with state-of-the-art autoen-
coders. In particular, the classifier trained using the fingerprints
learned by our proposed DCAE is able to maintain at least 90%
accuracy when the noise factor or sparsity ratio increases to 0.6
and 0.5, respectively.

Index Terms—Autoencoder, Bluetooth low energy (BLE) bea-
con, occupancy detection.

I. INTRODUCTION

DEVICE-FREE occupancy detection often manipulates
wireless signals to infer the presence of an occupant

without having the occupant carry any device. In this paper,
we refer to any living subject including humans and animals as
an occupant. Even though smartphones are ubiquitous nowa-
days, it is very unlikely for users to carry a smartphone with
them all the time, especially when they are at home or using
the washroom. While a camera-based approach is commonly
used for occupancy detection, it is impossible to install cam-
eras in every corner of home owing to their intrusive nature.
For example, it is uncomfortable to have a camera installed in
the sleeping room or the washroom. Furthermore, it is ridicu-
lous to have a baby or a pet in the house carry with them a
smartphone. RF fingerprinting has been widely exploited by
localization applications to provide location-based service [1].
However, these localization applications generally consider a
public scenario with many users moving around an indoor
or outdoor environment [2]. Our occupancy detection, on the

Manuscript received March 10, 2019; revised June 30, 2019; accepted
July 14, 2019. Date of publication July 19, 2019; date of current version
December 11, 2019. This work was supported by the HKUST-NIE Social
Media Laboratory. (Corresponding author: Pai Chet Ng.)

The authors are with the Department of Electronics and Computer
Engineering, Hong Kong University of Science and Technology, Hong Kong
(e-mail: pcng@ust.hk; eejames@ust.hk).

Digital Object Identifier 10.1109/JIOT.2019.2929822

other hand, considers a more private use case involving less
number of occupants. For example, it can help to find our pet
inside our house, or notify us if our beloved family members
fainted inside the washroom.

RF fingerprinting is a technique that labels a zone with a
fingerprint vector � ∈ R

M , where M denotes the number of
ambient wireless transmitters. Note that the word “zone” refers
to a smaller area that is a division of a large location. For
example, we can divide our home into a few smaller zones,
such as the reading zone, the dining zone, etc., subject to the
functionality of each space. In this paper, we exploit the sig-
nals transmitted by M Bluetooth low energy (BLE) beacons to
construct an M-dimensional vector �. Each element in � indi-
cates the time average received signal strength (taRSS) value
measured from a particular beacon. Most RF fingerprinting
systems are device-based in which each occupant is assumed
to carry with them a receiver. Hence, it is relatively easy to
observe the change of RF fingerprint when the user moves
from one zone to the other since the receiver is moving with
the user. However, such an approach also suffers the unreliabil-
ity owing to the RSS fluctuation. Many robust RF fingerprint
methods have been proposed to mitigate this RSS fluctuation
issue. For example, Lin et al. [3] proposed a neighbor rela-
tive RSS (NR-RSS) in constructing the fingerprint; whereas
He et al. [4] constructed the fingerprint by fusing the distance
information. However, both methods above are only suitable
for cases involving moving receivers.

While our previous work [5] achieves good detection
performance with device-based occupancy detection inside a
private room, it is relatively challenging to achieve similar
performance with a device-free system. However, consider
the infrequent use of smartphone inside a private location, it
is deemed necessary to provide device-free occupancy detec-
tion. In general, the device-free system deployed the receiver
as infrastructure in a fixed location to monitor the presence
of an occupant. Having said that, the RSS values measured
by the receiver is fairly consistent exclusive of the occu-
pant’s movement. Despite the above challenge, our preliminary
experiment unveils that there exists a huge variation in the RSS
values in connection with the presence of a human/animal
body. In light of this, we compute the temporal difference
between subsequent RSS (tdRSS) measurements and append
this M-dimensional tdRSS to the existing fingerprint, resulting
in a 2M-dimensional fingerprint vector for each zone.

In practical scenarios, the RF fingerprint vector � always
suffers the following two issues: 1) noise and 2) sparsity. A
fingerprint vector corrupted by noise always has changing and

2327-4662 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9153-5411

NG AND SHE: DCAE FOR ROBUST DEVICE-FREE OCCUPANCY DETECTION 9573

unpredictable RSS values even though the receiver remains
stationary. On the other hand, a sparse fingerprint vector
means that the vector contains many zeros elements, caused
by frequent packet loss. To this end, this paper proposes
denoising-contractive autoencoder (DCAE) to learn a robust
fingerprint from the noisy and sparse fingerprint vector. To
the best of our knowledge, this is the first work that jointly
addresses the above two issues with a novel autoencoder.
The main contributions of this paper are summarized as
follows.

1) Device-free occupancy detection is achieved by unveil-
ing the subtle change of the RF fingerprint with respect
to the human/animal body. Furthermore, we construct
the fingerprint vector by appending tdRSS to the con-
ventional taRSS.

2) DCAE is capable of reconstructing the fingerprint vec-
tor from both noisy and sparse fingerprint vector. We
validate the DCAE with different optimization methods
before applying the learned fingerprints for classification
training.

3) The performance of our proposed approach is vali-
dated with real-world datasets. The experimental results
indicate that our proposed DCAE outperforms state-of-
the-art autoencoders with different classifiers.

The rest of this paper is organized as follows. Section II
reviews the related work. Section III provides an empirical
analysis of the relationship between the RF signals and the
body. Section IV presents our device-free occupancy detection
system. Section V presents our proposed DCAE. Section VI
describes our experimental testbed for collecting the dataset
and discusses the experimental results. Section VIII concludes
this paper.

II. RELATED WORK

This section reviews the related works in occupancy detec-
tion, including both device-based and device-free occupancy
detection. After that, we review the recent works that leverage
machine learning techniques (both supervised and unsuper-
vised) to enhance the detection performance.

A. Occupany Detection

Occupancy detection is a binary classification problem
where value 1 indicates the presence of an occupant. Such
occupancy information is beneficial for many applications,
including emergency management [6], energy consumption
monitoring [7], proximity marketing [8], etc. In general, occu-
pancy detection can be broadly divided into the following two
types.

1) Device-Based Occupancy Detection: There have
been many research works on detecting the pres-
ence/position/location of a mobile device [9], [10] using
wireless signals from BLE beacons. In particular, Wu et al. [9]
jointly considered the RSS values from the beacon and the
accelerometer measurements from the smartphone to deliver
an accurate localization. On the other hand, Faragher and
Harle [10] constructed the RF fingerprint with the RSS
values from the deployed beacons. Both Wu et al. [9] and

Faragher and Harle [10] assumed that the users always carry
with them a smartphone. In other words, it is impossible
to detect the presence of an occupant in the absence of a
smartphone. Furthermore, none of the above works consider
the packet loss issue. Note that the smartphone is unable to
measure the RSS value from a particular beacon when it fails
to observe a packet from that beacon.

2) Device-Free Occupancy Detection: It is very unlikely for
users to always carry with them a smartphone, especially when
they are in their own house. However, occupancy detection is
deemed necessary for a home environment to ensure the safety
of our family members and pets. There are a number of works
that manipulate diverse sensor information (e.g., light, temper-
ature, CO2, etc.) [11] or power consumption information [7]
to achieve device-free occupancy detection. However, none
of these works can estimate the number of occupants in a
given time frame. Recently, there has been active research in
exploiting wireless signals to deliver nonintrusive device-free
occupancy detection. In particular, Yang et al. [12] used the
channel state information (CSI) from the WiFi device to infer
the occupancy activities. Chang et al. [13], on the other hand,
delivered fine-grained occupancy detection with RSS-based
radio map. While Mager et al. [14] addressed the detection
performance issue with respect to the changing environments,
none of the above works consider performance degradation
due to the packet loss.

B. Machine Learning for Occupancy Detection

Many machine learning techniques have been applied to
provide better occupancy detection, either through a super-
vised or unsupervised approach.

1) Supervised Learning: Supervised learning trains a model
to classify zones. Many different classification techniques have
been adopted to deal with either occupancy or localization
problems. Supervised neural network (NN) classifier has been
used by Ekwevugbe et al. [15] for occupancy detection, and by
Anzum et al. [16] for zone-based localization. Lei et al. [17]
adopted logistic regression to improve the localization accu-
racy in changing environments, while Zhou et al. [18] used
a support vector machine (SVM) classifier to enhance the
performance in noisy environments. Note that all these works
merely use the raw RSS values to construct the fingerprint
vector; hence, they are able to achieve good performance only
when the testing environments match the training environment.
Recently, there has been significant interest in using unsu-
pervised machine learning techniques, especially autoencoder,
to enhance the detection performance by learning a robust
fingerprint vector.

2) Unsupervised Learning: Autoencoder is an unsuper-
vised NN that can learn a robust hidden representation
via a reconstruction process [19], [20]. Most autoencoders,
including stacked autoencoder (SAE) [21] and denoising
autoencoder (DAE) [22], aim to learn a compressed repre-
sentation with a discriminative approach. Xiao et al. [23] and
Chen et al. [24] leveraged DAE to learn a robust fingerprint
in noisy environments. Wu and Tseng [25] and He et al. [26],
on the other hand, used SAE to learn a robust fingerprint

9574 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 6, DECEMBER 2019

Fig. 1. BLE beacon is a tiny device with a similar size to a five dollar coin.

from WiFi devices. While all of the above works improve the
detection performance by learning a robust fingerprint repre-
sentation in noisy and always changing environments, none of
them jointly address the issues related to noise and sparsity.

III. BLUETOOTH LOW ENERGY BEACON

BLE is an emerging technology tailored for Internet of
Things (IoT) development [27], [28]. Among all the BLE-
enabled devices, BLE beacon has received a lot of interest for
its promising features for IoT application. BLE beacon is a low
power transmitter, which is designed to broadcast its packet
according to the pre-defined advertising interval Ta. Previous
work [10] has shown that BLE beacons are the potential infras-
tructure for RF fingerprint in comparison to the WiFi access
points. Furthermore, the small form factor of BLE beacon, as
shown in Fig. 1, allows the beacon to be deployed in a remote
area that is not accessible by the commodity WiFi device.

As discussed, BLE beacon broadcast their packets period-
ically according to Ta. The RSS value can be measured by
the receiver upon receiving the packet. RSS is a measure-
ment in dBm scale [i.e., Pr,(dBm) = 10 log(Pr,(watt)/1 mW)],
which typically ranges from −20 to −90 dBm subject to the
distance between the beacon and the receiver. Many existing
works simply use the raw RSS measurements to construct the
fingerprint vector [10], [29], [30]. However, RSS values have
been proven to be unreliable as a consequence of shadow-
ing effects and multipath fading [31], [32]. In this section,
we analyze the RSS values in different environments using
the real-world datasets collected by Lazik et al. [33]. We also
show that the fingerprint vector is always sparse by analyz-
ing the dataset provided by Mohammadi et al. [34]. Lastly,
an empirical analysis is conducted to investigate the signal
attenuation factor with respect to the human/animal body.

A. Always Changing RSS Values Due to Unpredictable
Environmental Variations

We used the CMU localization dataset [33] to investigate
the variations of RSS in different environments. The beacon
data contains the following attributes: 1) timestamp; 2) major
value; 3) minor value; 4) distance; 5) RSS value; and 6) prox-
imity information. The data were collected from six different
environments, and each beacon was mounted on a tripod, as
depicted in Fig. 2. Fig. 3(a) shows the RSS values from ten
beacons deployed in a lobby area, and Fig. 3(b) shows the
RSS values from four beacons deployed along a corridor. Note
that the receiver remained stationary during the data collection;

Fig. 2. CMU localization dataset [33] consists of the beacon data collected
from ten beacons mounted on different tripods.

(a) (b)

Fig. 3. RSS values suffer severe fluctuation in both (a) lobby and (b) corridor
environment.

Fig. 4. BLE RSSI dataset [34] consists of RSS values measured from 13
beacons (indicated by the green dotted circle) deployed in Waldo Library.

however, from both Fig. 3(a) and (b), we observe that the RSS
values suffer severe fluctuation, in which their values varied
from −91 to −53 dBm. Such variations could be due to the
environmental noise and multipath reflection. To address the
RSS fluctuation issue, this paper adopts the Frobenius norm
to train the autoencoder such that the encoded feature learned
in the hidden layer is less sensitive to the input variations.

B. Sparse Fingerprint Vector Due to Frequent Packet Loss

The fingerprint vector acquired during real-time observation
always suffers from a sparsity problem as a consequence of
unpredictable packet loss. We used the BLE RSSI dataset [34]
to verify the sparseness of the fingerprint vector. This dataset
consists of RSS values measured from 13 beacons deployed in
the Waldo Library, Western Michigan University. Fig. 4 depicts
the blueprint of the library and the location of each beacon. In
total, 1420 fingerprint vectors were collected at 105 different

NG AND SHE: DCAE FOR ROBUST DEVICE-FREE OCCUPANCY DETECTION 9575

Fig. 5. Fingerprint matrix indicates the RSS values measured from the 13
beacons at all 105 detection points.

(a)

(b)

Fig. 6. Pattern of RSS values (a) when there is no human body in the
environment and (b) when there is. The RSS values further suffer uncommon
variations when there is a significant human movement.

detection points, where each point is defined by its column
alphabet and row number. Fig. 5 illustrates the fingerprints
by detection points matrix. Note that the white area with the
value 0 indicates a missing element instead of 0 dBm. From
Fig. 5, we can see that the fingerprint vectors for most of
the detection points are, in fact, very sparse. In other words,
some of the packets from certain beacons fail to arrive at the
receiving end. To address the sparsity issue, we exploit the
loss function introduced by the DAE to train the autoencoder.

C. Relationship Between Signal Attenuation and Body

To investigate the relationship between signal attenuation
and body, we performed data collection in a controlled envi-
ronment by making sure that there is no human/animal body
presence during the data collection process. After this, we
repeated the same data collection process with human pres-
ence. Fig. 6(a) and (b) shows the pattern of the RSS values
from 0 to 3 min for the above two cases, respectively. It is clear
that the presence of a human body causes severe attenuation
on the RSS values. In particular, the mean RSS reported by the
receiver increases from r̄ = −56.69 dBm to r̄ = −74.36 dBm
when there is a human body in the environment, whereas the
variance increases from var(r) = 8.3524 to var(r) = 28.4019.
Note that there is a uncommon variation during 120–140 s,
as indicated in Fig. 6(b). Such an uncommon variation was

Fig. 7. CDF of dfRSS, i.e., � between subsequent RSS values.

TABLE I
SUMMARY OF MATHEMATICAL NOTATIONS

caused by the movement of the body. More precisely, the pres-
ence of a body causes signal attenuation, and the movement
of the body further causes unpredictable variations.

Furthermore, there is a significant difference between subse-
quent RSS values with the presence of a human body. Fig. 6(a)
and (b) shows that RSS values vary between [−52,−62] dBm
in the absence of a human body, and between [−65,−85] dBm
with the presence of a human body. We computed the tdRSS
values, i.e., � = (r(t) − r(t−))2, and plot the cumulative dis-
tribution function of �, as shown in Fig. 7. From Fig. 7, we
can see that � < 60 for at least 90% when there is no human
body, whereas � < 160 when there is a human body. Based
on such observations, we can use � to construct the fingerprint
vector other than merely rely on the raw RSS values.

IV. DEVICE-FREE OCCUPANCY DETECTION

This section describes our device-free occupancy detec-
tion system based on the inspiration we obtained from the
observations described in Section III-C. Fig. 8 illustrates the
system, which consists of: 1) training and 2) detection phase.
Both training and detection phase use the fingerprint vector
obtained during the data acquisition for training and detec-
tion. The mathematical notations used throughout this paper
are summarized in Table I.

A. System Model

The occupancy detection can be regarded as a binary clas-
sification problem with Y ∈ {0, 1}, where 1 indicates the
presence of an occupant and 0 the absence. Given N zones
over a large location, the occupancy detection can be easily
extended to multinomial classification. Let Z = {zi|0 < i ≤ N}

9576 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 6, DECEMBER 2019

Fig. 8. Our device-free occupancy detection system consists of the following two major phases: a training phase for learning a robust fingerprint, and a
detection phase for delivering real-time occupancy detection.

be a set of zones, the occupancy detection in a given zone
is a mapping function that maps Z to Y , more specifically,
g : Z → Y . The output is an N-dimensional occupancy vector
z, which can be described as follows:

z = (
g(z1) g(z2) · · · g(zi) · · · g(zN−1) g(zN)

)T
.

(1)

When there is only one occupant in a location, z will con-
sists of only one 1 and N − 1 zeros because it is impossible
for an occupant to appear in two different zones at the same
time. Similarly, when there are n occupants in a location,
z should have n ones and N − n zeros. Suppose that the
observed fingerprint vector �(y) is based on M beacons, the
relationship between z ∈ {0, 1}N and �(y) ∈ R

M can then be
modeled as

�(y) = �z + ε (2)

where ε is the noise vector and � ∈ R
M×N is the fingerprint

matrix, in which each column of � denotes the fingerprint
vector �(zi) ∈ R

M for zone zi. The objective here is to find z
given �(y) and �.

However, as discussed in Sections III-A and III-B, solving
z can be challenging especially when �(zi) is: 1) noisy and
2) sparse. Furthermore, if we merely construct the fingerprint
vector with the RSS values from M beacons, the system might
be unable to capture the subtle change in the signal behavior
for device-free occupancy detection. Hence, this paper exploits
the RSS differences besides the RSS values in constructing
the fingerprint vector. The next section first describes the gen-
eral data acquisition process, before presenting our proposed
fingerprint vector.

B. Data Acquisition

Suppose that the advertising interval Ta of a beacon is
100 ms, then a receiver with scanning duration Ts = 1 s should
able to receive at least ten packets during the data acquisition
process. Upon receiving the packet, the receiver can measure
the RSS value and at the same time identify the beacon based
on the MAC address and the device name encapsulated inside
the beaconing packet. Being able to identify the beacon is very

important in ensuring the fingerprint vector is constructed in
proper order.

Let B = {bj|0 < j ≤ M} be a set of beacons and each bea-
con has the same Ta, then at least 10×M packets should have
arrived at the receiving end after 1 s, assuming no packet loss.
Generally, the fingerprint vector is constructed by averaging
the RSS values over Ts. Let R = {rbj(t)|0 < t ≤ Ts, bj ∈ B} be
a set of instantaneous RSS values acquired over Ts at zone zi,
the taRSS would be rbj

(zi) = (1/|Rbj |)
∑

rbj∈Rbj
rbj(t), where

Rbj ⊂ R contains a list of r from beacon bj. By rearrang-
ing rbj

(zi),∀bj ∈ B according to the order defined by B, the
fingerprint vector at zone i can be obtained

�(zi) = (
rb1

(zi) rb2
(zi) . . . rbM

(zi)
)T

. (3)

The dimensionality of �(zi) should be the same as the car-
dinality of set B if only taRSS is considered. In this paper,
besides taRSS we also exploit tdRSS (i.e., � = (r(t)−r(t−))2)
in constructing the fingerprint vector. Similarly, we compute
the average of � given the set R recorded over Ts, i.e.,

�bj

(zi) = 1

|Rbj | − 1

∑

rbj∈Rbj

(
rbj(t) − rbj

(
t−

))2
. (4)

By appending (3) with vector � ∈ R
M , we will have a 2M-

dimensional fingerprint vector as follows:

�(zi) =
(

rb1
(zi) rb2

(zi) . . . rbM
(zi) | �

(zi)
)T

(5)

where �
(zi) =

(
�b1

(zi)
�b2

(zi)
. . . �bM

(zi)
)T

.
Hence, the fingerprint matrix � should now be a 2M × N

matrix instead of M × N as described in (2). Similarly, the
dimension of �(y) should be 2M. During the training phase,
the receiver is configured to have a much longer Ts such
that the system can observe all the M beacons for fingerprint
construction. On the other hand, Ts should be as short as pos-
sible for real-time detection purposes. Such a short Ts can be
another problem leading to sparse observation. Furthermore,
the observed fingerprint vector during the detection phase
might be distorted by the environmental noise, and causes
performance degradation if we simply match the observed
fingerprint with a list of registered fingerprints in the database.

NG AND SHE: DCAE FOR ROBUST DEVICE-FREE OCCUPANCY DETECTION 9577

Fig. 9. Our proposed DCAE jointly addresses the noise and sparsity issues
by performing denoising and contractive training on the same NN.

In the next section, we present our proposed DCAE which can
learn a robust fingerprint representation from the noisy and
sparse fingerprint inputs.

V. DENOISING-CONTRACTIVE AUTOENCODER

This section first describes the general autoencoder before
presenting our proposed DCAE. Lastly, we describe the clas-
sification process to detect the zone occupied by an occupant
based on the fingerprint vector reconstructed by our DCAE.

A. General Loss Function of Autoencoder

Autoencoder is an unsupervised NN, which learns to recon-
struct the output given the input data. In our context, the input
data is the fingerprint vector � ∈ R

2M , and the autoencoder
will learn to reconstruct �̃ ∈ R

2M through backpropagation.
Such a reconstruction problem is nontrivial by imposing a bot-
tleneck to its hidden layer such that the size of the hidden layer
H is much smaller than 2M.

As illustrated in Fig. 9, the autoencoder consists of two
parts: 1) encoder and 2) decoder. The encoder learns a hid-
den representation given the input data, whereas the decoder
reconstructs the output data from the hidden representation.
Given the fingerprint vector �, the encoder and decoder can

be described as follows:

�̈ = σ(We� + be)

�̃ = σ
(
Wd�̈ + bd

)
(6)

where We ∈ R
H×M and be ∈ R

H is the weight and bias,
respectively, learned by the encoder and Wd ∈ R

M×H and bd ∈
R

M is the weight and bias learned by the decoder. σ(·) is the
nonlinear activation function, which can be either a sigmoid
or tanh function. The dimension of the encoded vector �̈ ∈
R

H is always smaller than the dimension of the fingerprint
vector � ∈ R

M . The loss function for a general autoencoder
is defined as

L
(
�, �̃

)
= ‖�̃ − �‖2

2. (7)

The general autoencoder is useful in learning a compressed
representation. However, it might be unable to deal with noisy
and sparse input. In other words, the reconstruction error
increases when the input is noisy and sparse.

B. DCAE for Noisy and Sparse Input

Fig. 9 depicts the NN architecture of our proposed DCAE.
Note that our DCAE uses the same encoder and decoder func-
tion as the general autoencoder described by (6). However,
instead of directly using the input fingerprints �, we impose
some noise (ε, ε) ∼ N (0, 1) to vector �. Hence, the encoder
function learns the encoded vector based on �̇ = � + (ε, ε)

instead of �. Such an approach is similar to the conven-
tional DAE.

However, we added a penalty term to the loss function to
ensure that the learned hidden representation (i.e., the encoded
vector) is less sensitive to the input variations. The penalty
term is the same as the one introduced by the conventional
CAE. While our DCAE is based on a similar approach to
DAE and CAE, it is not obvious to simply integrate them for
dealing with the noisy and sparse input at the same time. The
common approach to combine DAE and CAE is by training
each model in a sequential manner; however, such a sequential
approach might increase the training cost and at the same time
fail to generalize to the input that has both noise and sparsity
issues.

Instead, our DCAE jointly considers the noise and sparsity
issues by defining the following loss function:

L
(
�, �̃

)
= ‖�̃ − �̇‖2

2 + λ‖J
(
�̈

)‖2
F

= ‖σ (
Wd�̇ + be

) − �‖2
2 + λ‖J

(
�̃

(t)
)
‖2

F

= ‖σ (
Wdσ

(
We�̇ + be

) + bd
) − �‖2

2 + λ‖J
(
�̈

)‖2
F

(8)

where the decoder output �̃ is reconstructed with respect
to the noisy sample �̇

(t)
instead of �. The second penalty

term is the Frobenius norm of the jacobian matrix ‖J(�̈
(t)

)‖2
F

with regulation parameter λ. ‖J(�̃
(t)

)‖2
F can be calculated as

follows:

‖J
(
�̃

(t)
)
‖2

F =
∑

mh

(
∂φ̇h

∂φ̃
(t)
m

)2

. (9)

9578 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 6, DECEMBER 2019

(a) (b) (c) (d)

Fig. 10. Training and validation loss achieved by (a) SGD, (b) RMSprop, (c) Adadelta, and (d) L-BFGS optimizers.

Intuitively, we would like to make sure that the learned hidden
input is less sensitive to the input variations. With our proposed
DCAE, we can simply train the network with a single loss
function, rather than stacking up the DAE and CAE.

C. Optimization Methods

Different optimization methods can be used to minimize
the loss function described by (8). We used a small dataset,
which consists of beacon data collected in a room envi-
ronment, to validate the performance of each optimization
method before adopting the method for extensive experiments.
Four optimization methods were tested: 1) stochastic gradient
descent (SGD); 2) root mean square propagation (RMSprop);
3) adaptive learning rate (Adadelta); and 4) limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS).

We divided the data into training and validation set, and
Fig. 10 shows the training and validation loss achieved by all
the four optimizers. L-BFGS has the shortest running time
among the four optimizers. In general, L-BFGS is preferable
when the computer has limited memory. Considering we will
also run the training on a local computer equipped with a stan-
dard CPU, we opt to adopt L-BFGS for the training. However,
it seems that the training and validation loss start to diverge
after 20 epochs. Hence, we might have to tune the parameters
or reduce the training epochs to avoid overfitting.

D. Classification

Given the reconstructed fingerprint, we can apply any clas-
sifier to solve the multinomial occupancy detection problem.
The common approach is to add a softmax layer to the decoder
output for classification purposes. However, softmax is not the
only choice. As illustrated in Fig. 8, our ultimate goal is to
train a classifier, which can be any legacy classifier, to classify
whether or not a zone is occupied. Without loss of generality,
the objective of the classifier can be described as follows:

y = arg max
zi∈Z

Pc

(
z̃ = zi|�̃(y)

)
(10)

where Pc(·) returns the probability for each zone based on the
black box classification function c. In Section VI, we present
the performance evaluation of different classifiers including
multilayer perceptron (MLP), k nearest neighbor (kNN), SVM,
and naive Bayes (NB).

Fig. 11. Total of 16 beacons (marked with dotted line circles) were deployed
in both of our experimental testbeds. (a) Hallway. (b) Staircase.

VI. EXPERIMENTAL EVALUATIONS AND RESULTS

This section describes the setting of the experimental
testbeds for data collection and then discusses the detection
performance achieved by the proposed DCAE.

A. Data Collection

We collected the data from two different experimental
testbeds: 1) the hallway and 2) the staircase, as shown in
Fig. 11(a) and (b). There were a total of 16 beacons deployed
in each testbed. The location of each beacon is indicated
with the Bluetooth symbol, as shown in Fig. 12. We used an
Android phone to act as a receiver since it is the commonly
available receiver to collect the beacon data. A data collection
App was developed and installed for the data collection pur-
pose. During the collection process, the App logs the following
information: beacon MAC address, RSS value, timestamp, and
data payload. The collected data were saved in the local phone
storage in “.csv” format. For each testbed, we divided the loca-
tion into 32 different smaller zones. As depicted in Fig. 12,
these zones were marked with the “x” marker. The user was
required to indicate their presence in each zone before we start
the data collection process remotely. Approximate 800+ set
of fingerprints were collected in each zone, amounting to a
total of 40k sets of fingerprints.

Note that we only required the effort from a user to notify us
of his/her location during the remote data collection. However,
the collected data can be manipulated to reflect the pres-
ence of multiple occupants in multiple zones. As illustrated
in Fig. 13, the presence of the occupant at different zones will

NG AND SHE: DCAE FOR ROBUST DEVICE-FREE OCCUPANCY DETECTION 9579

(a) (b)

Fig. 12. Bluetooth symbols indicate the location of the deployed beacons, and the “x” markers indicate the zones. (a) Hallway. (b) Staircase.

Fig. 13. Presence of occupant 1 will cause a change in the RSS values
measured from b5 and b6; whereas the presence of occupant 2 will change
the RSS value measured from b4.

cause different changes to the existing fingerprint. By learning
these subtle changes, we can then infer the current zone occu-
pied by the user/animal. Similarly, when there are multiple
occupants, we can directly infer their zones by observing the
changes on the RSS fingerprint. Note that the layout of the
deployed beacons shown in Fig. 13 is just for quick illus-
tration, in practical scenario, the beacons can be randomly
deployed at any location. One interesting observation is that
different body composition might have different effects on the
RSS measurements. Hence, one possible future work could be
the identification between human and animal, or even between
male and female.

B. Training and Testing

In total, there are 40k sets of fingerprints from a total of
64 zones. Given these sets of fingerprints, we divided them
into 80% training and 20% testing set. We used the tensor-
flow framework to build our model, and the model was trained
with both local computer and cloud computer. The local com-
puter is equipped with a single core CPU (hyperthreaded Xeon
Processors @2.3 GHz), whereas the cloud computer provides
us with a GPU (1xTesla K80, 2496 CUDA cores, 12-GB
GDDR5 VRAM) for the training process.

Furthermore, we build the model using state-of-the-art
autoencoders, including DAE, CAE, and SAE. DAE has been
used by Xiao et al. [23] for 3D localization, whereas SAE
has been used by [35]. Mean squared error (MSE) was used
to compute the reconstruction error, and the result achieved
by each autoencoder is shown in Fig. 14. It is clear that our
proposed DCAE suffers the least reconstruction error (i.e.,

Fig. 14. Reconstruction error of our proposed DCAE in comparison to DAE,
CAE, and SAE.

around 0.047) as compared to the rest. Using the recon-
structed output, we trained different classifiers for occupancy
detection.

C. Results and Discussion

We evaluate the accuracy of each classifier by measuring
the number of times the classifier returns the correct zone
of occupants with the total number of tests. Besides evaluat-
ing the accuracy of each classifier with different autoencoders
using the original 20% testing set, we added the noise factor
and sparsity ratio to the testing set for further evaluation.

1) Detection Accuracy Versus Noise Factor: The noise fac-
tor is added by randomly drawing a value from the normal
distribution N (0, 1). We varied the noise factor from 0.1 to 20,
and the detection accuracy achieved by each classifier is shown
in Fig. 15. The black dotted line indicates the performance of
the classifier with the fingerprint vector constructed with raw
RSS values. In general, the detection accuracy decreases when
the noise factor increases. However, we can achieve a sub-
stantial performance improvement when applying the classifier
with the fingerprint learned by the autoencoders.

Among all the autoencoders, our proposed DCAE achieves
the best performance. Even though all the four classifiers have
shown almost identical performance, kNN somehow outper-
forms the others with better detection accuracy. One possible
reason is that the fingerprints learned by the 80% training
data groups the fingerprints from the same zone into the same
neighborhood boundary, in which, by casting the vote based
on the top k neighbors, kNN is able to detect the zone correctly
comparing to other classifiers.

2) Detection Accuracy Versus Sparsity Ratio: We evalu-
ated the performance of each classifier by varying the sparsity

9580 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 6, DECEMBER 2019

(a) (b) (c) (d)

Fig. 15. Detection accuracy achieved by SAE, DAE, CAE, and our proposed DCAE with (a) MLP, (b) NB, (c) SVM, and (d) kNN classifiers, with respect
to the noise factor.

(a) (b) (c) (d)

Fig. 16. Detection accuracy achieved by SAE, DAE, CAE, and our proposed DCAE with (a) MLP, (b) NB, (c) SVM, and (d) kNN classifiers, with respect
to the sparsity ratio.

ratio. We define the sparsity ratio by taking the ratio between
‖dim(�)−�‖0 and dim(�), where dim(�) denotes the dimen-
sionality of the fingerprint vector and ‖�‖0 returns the total
number of nonzero elements of a given vector. Note that the
sparsity ratio is bounded between (0, 1]. In other words, it
is impossible to have a sparsity ratio equal to 1 because this
simply means that the receiver observes nothing.

Hence, we varied the sparsity ratio from 0 to 0.8, and
the results achieved by each classifier are shown in Fig. 16.
Similarly, the detection performance decreases when the spar-
sity ratio increases. The performance can be enhanced by
applying the autoencoder to reconstruct the sparse finger-
print vector. Again, our proposed DCAE outperforms the
rest with good detection performance. SVM achieves better
performance among all the classifiers. In general, the trained
SVM can draw a better decision boundary with a sparse input
vector in comparison to the rest.

VII. IMPLEMENTATION FOR ONLINE DETECTION

To proceed with online detection, we developed a real-time
database using Firebase platform to monitor the fingerprints
at the two testbeds described above. More precisely, the on-
site receiver will measure fingerprints and update to the online
database; whereas the remote computer will retrieve these fin-
gerprints to infer if there were any occupants. Fig. 17 shows
the screenshot of the detection output on the remote com-
puter when there is no one on any of the zones. Using the
implemented system, we further performed a series of exper-
iments for the following two cases: 1) single moving target
and 2) multiple moving targets.

Fig. 17. Screenshot of the monitoring system by the remote computer:
the left-hand side shows the retrieved RSS measurements from the database
and the right-hand side shows the console output in computing the RSS
measurements to identify the occupancy.

A. Case 1: Wandering Around the Hallway

We consider a scenario which always happens in a private
home setting. That is, a user wandering around the hallway
when they were puzzled. During the experiment, the user was
required to randomly move around the zone every 1 min, for a
total of 30 min. A form was provided for the user to jot down
their current zone every 1 min. After that, we can measure
the performance by comparing the information in that form
with the detection output returned by the remote computer.
We repeated the same experiment procedures with ten differ-
ent users, and each user was required to repeat the experiment
for two times. Fig. 18 shows one of the examples of the zone
visited by the user at every minute. It is clear that our occu-
pancy detection is able to output a correct zone for almost
99% of the time. However, the remote computer only able to

NG AND SHE: DCAE FOR ROBUST DEVICE-FREE OCCUPANCY DETECTION 9581

Fig. 18. Black curve indicates the zone jotted down by the user, whereas the
red curve indicates the detection output observed from the remote computer.

Fig. 19. CDF plot shows that the system took no more than 3 s (for at least
80% of the time) to return a correct zone.

(a)

(b)

Fig. 20. (a) Upper confusion matrix shows the detection accuracy for the
first user, and (b) the lower confusion matrix for the second user.

produce the detection output after a certain amount of delay.
As we zoom into each point, we can see that it took about
1–3 s for the system to detect the zone. We computed the
probability of delay by consolidating the delay from all the
20 experiment data (ten users × two times). Fig. 19 shows
that for at least 80% of the time, the delay is generally less
than 3 s.

B. Case 2: Hopping on the Staircase

Multiple moving targets are also a common scenario in
many private home setting, for example, children like to play
on the staircase. To emulate the above scenario, we required
two users to randomly hop around the zone every 1 min. We
used confusion matrices to evaluate the detection accuracy, as
shown in Fig. 20. The x-axis of the confusion matrix indicates
the zone, whereas the y-axis indicates the zone detected by the
remote computer. The detection accuracy can be computed by
averaging the diagonal elements of the confusion matrix. Note
that the result can be generalized to the case with n targets.
From the two confusion matrices, we can see that the detec-
tion accuracy drop a bit compared to the case of a single user.
This can be explained by the fact that when the two users were
in close proximity, the changes on the RSS fingerprint is not
obvious, and hence, the system only able to detect the occu-
pancy of a user and unable to detect the presence of the other
user. Note that such an issue can be addressed by installing
extra receiver at different locations such that this extra receiver
can detect the changes on RSS fingerprint from another angle.
Overall, the installation planning for the receivers is very much
dependent on the size of the private location and the number
of occupants we would like to monitor. For most private set-
ting such as washroom, a single receiver should be sufficient
to provide very good detection performance.

VIII. CONCLUSION

This paper presents device-free occupancy detection by
learning a robust fingerprint vector with our proposed DCAE.
The contributions of our device-free occupancy detection are
twofold: first, we construct the fingerprint vector by appending
taRSS with tdRSS and second, our proposed DCAE can jointly
deal with the two common issues faced by most RF fingerprint
approaches, i.e., noise and sparsity. To evaluate our device-free
occupancy detection with BLE beacons, we collected a large-
scale dataset from a total of 64 zones. About 800+ sets of
fingerprints were collected, amounting to a total of 40k sets
of fingerprints. Extensive experiments with different classifiers
validate the superiority of our proposed DCAE in learning
a robust representation. Lastly, we demonstrate the feasibil-
ity of our proposed approach with practical implementation.
There are a few possible future works inspired by the practical
experiment. For example, a beacon-receiver deployment strat-
egy can be devised to optimized the detection performance
for different use cases. Furthermore, we can also implement
the training process on the receiver and then update the trained
model to the cloud instead of relying on the cloud for training.
The benefit of on-receiver training is that each receiver has a
better picture of the fingerprint rather than the cloud, hence,
on-receiver training can provide an updated model from time
to time.

REFERENCES

[1] S. He, B. Ji, and S.-H. G. Chan, “Chameleon: Survey-free updating of
a fingerprint database for indoor localization,” IEEE Pervasive Comput.,
vol. 15, no. 4, pp. 66–75, Oct./Dec. 2016.

9582 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 6, DECEMBER 2019

[2] S.-H. Fang, Y.-T. Hsu, and W.-H. Kuo, “Dynamic fingerprinting com-
bination for improved mobile localization,” IEEE Trans. Wireless
Commun., vol. 10, no. 12, pp. 4018–4022, Dec. 2011.

[3] K. Lin, M. Chen, J. Deng, M. M. Hassan, and G. Fortino, “Enhanced
fingerprinting and trajectory prediction for IoT localization in smart
buildings,” IEEE Trans. Autom. Sci. Eng., vol. 13, no. 3, pp. 1294–1307,
Jul. 2016.

[4] S. He, S.-H. G. Chan, L. Yu, and N. Liu, “Fusing noisy fingerprints with
distance bounds for indoor localization,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Apr. 2015, pp. 2506–2514.

[5] P. C. Ng, J. She, and R. Ran, “Towards sub-room level occupancy detec-
tion with denoising-contractive autoencoder,” in Proc. IEEE Int. Conf.
Commun. (ICC), Shanghai, China, 2019, pp. 1–6. [Online]. Available:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8761294&
isnumber=8761046. doi: 10.1109/ICC.2019.8761294.

[6] A. Filippoupolitis, W. Oliff, and G. Loukas, “Bluetooth low energy
based occupancy detection for emergency management,” in Proc. 15th
Int. Conf. Ubiquitous Comput. Commun. Int. Symp. Cyberspace Security
(IUCC-CSS), Dec. 2016, pp. 31–38.

[7] M. Jin, R. Jia, and C. J. Spanos, “Virtual occupancy sensing: Using
smart meters to indicate your presence,” IEEE Trans. Mobile Comput.,
vol. 16, no. 11, pp. 3264–3277, Nov. 2017.

[8] M. Papandrea, S. Giordano, S. Vanini, and P. Cremonese, “Proximity
marketing solution tailored to user needs,” in Proc. IEEE Int. Symp.
World Wireless Mobile Multimedia Netw. (WoWMoM), 2010, pp. 1–3.

[9] X. Wu, R. Shen, L. Fu, X. Tian, P. Liu, and X. Wang, “iBILL: Using
iBeacon and inertial sensors for accurate indoor localization in large
open areas,” IEEE Access, vol. 5, pp. 14589–14599, 2017.

[10] R. Faragher and R. Harle, “Location fingerprinting with Bluetooth
low energy beacons,” IEEE J. Sel. Areas Commun., vol. 33, no. 11,
pp. 2418–2428, Nov. 2015.

[11] L. M. Candanedo and V. Feldheim, “Accurate occupancy detection of an
office room from light, temperature, humidity and CO2 measurements
using statistical learning models,” Energy Build., vol. 112, pp. 28–39,
Jan. 2016.

[12] J. Yang, H. Zou, H. Jiang, and L. Xie, “Device-free occupant activity
sensing using WiFi-enabled IoT devices for smart homes,” IEEE Internet
Things J., vol. 5, no. 5, pp. 3991–4002, Oct. 2018.

[13] L. Chang et al., “FitLoc: Fine-grained and low-cost device-free local-
ization for multiple targets over various areas,” IEEE/ACM Trans. Netw.,
vol. 25, no. 4, pp. 1994–2007, Aug. 2017.

[14] B. Mager, P. Lundrigan, and N. Patwari, “Fingerprint-based device-free
localization performance in changing environments,” IEEE J. Sel. Areas
Commun., vol. 33, no. 11, pp. 2429–2438, Nov. 2015.

[15] T. Ekwevugbe, N. Brown, V. Pakka, and D. Fan, “Real-time build-
ing occupancy sensing using neural-network based sensor network,” in
Proc. 7th IEEE Int. Conf. Digit. Ecosyst. Technol. (DEST), Menlo Park,
CA, USA, Jul. 2013, pp. 114–119.

[16] N. Anzum, S. F. Afroze, and A. Rahman, “Zone-based indoor localiza-
tion using neural networks: A view from a real testbed,” in Proc. IEEE
Int. Conf. Commun. (ICC), May 2018, pp. 1–7.

[17] Q. Lei, H. Zhang, H. Sun, and L. Tang, “Fingerprint-based device-free
localization in changing environments using enhanced channel selection
and logistic regression,” IEEE Access, vol. 6, pp. 2569–2577, 2018.

[18] R. Zhou, X. Lu, P. Zhao, and J. Chen, “Device-free presence detection
and localization with SVM and CSI fingerprinting,” IEEE Sensors J.,
vol. 17, no. 23, pp. 7990–7999, Dec. 2017.

[19] P. Baldi, “Autoencoders, unsupervised learning, and deep architectures,”
in Proc. ICML Workshop Unsupervised Transf. Learn., 2012, pp. 37–49.

[20] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[21] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” J. Mach. Learn. Res.,
vol. 11, pp. 3371–3408, Dec. 2010.

[22] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in
Proc. 25th Int. Conf. Mach. Learn. (ICML), 2008, pp. 1096–1103.

[23] C. Xiao, D. Yang, Z. Chen, and G. Tan, “3-D BLE indoor local-
ization based on denoising autoencoder,” IEEE Access, vol. 5,
pp. 12751–12760, 2017.

[24] X. Chen, C. Ma, M. Allegue, and X. Liu, “Taming the inconsistency
of Wi-Fi fingerprints for device-free passive indoor localization,” in
Proc. IEEE Conf. Comput. Commun. (INFOCOM), Atlanta, GA, USA,
May 2017, pp. 1–9.

[25] G.-S. Wu and P.-H. Tseng, “A deep neural network-based indoor posi-
tioning method using channel state information,” in Proc. Int. Conf.
Comput. Netw. Commun. (ICNC), Mar. 2018, pp. 290–294.

[26] S. He, S.-H. G. Chan, L. Yu, and N. Liu, “SLAC: Calibration-
free pedometer-fingerprint fusion for indoor localization,” IEEE Trans.
Mobile Comput., vol. 17, no. 5, pp. 1176–1189, May 2018.

[27] M. Collotta, G. Pau, T. Talty, and O. K. Tonguz, “Bluetooth 5: A concrete
step forward toward the IoT,” IEEE Commun. Mag., vol. 56, no. 7,
pp. 125–131, Jul. 2018.

[28] K. E. Jeon, J. She, P. Soonsawad, and P. C. Ng, “BLE beacons for
Internet of Things applications: Survey, challenges, and opportunities,”
IEEE Internet Things J., vol. 5, no. 2, pp. 811–828, Apr. 2018.

[29] N. Alsindi, Z. Chaloupka, N. AlKhanbashi, and J. Aweya, “An empirical
evaluation of a probabilistic RF signature for WLAN location finger-
printing,” IEEE Trans. Wireless Commun., vol. 13, no. 6, pp. 3257–3268,
Jun. 2014.

[30] X. Tian, Z. Song, B. Jiang, Y. Zhang, T. Yu, and X. Wang, “HiQuadLoc:
A RSS fingerprinting based indoor localization system for quadro-
tors,” IEEE Trans. Mobile Comput., vol. 16, no. 9, pp. 2545–2559,
Sep. 2017.

[31] M. Ayadi and A. B. Zineb, “Body shadowing and furniture effects for
accuracy improvement of indoor wave propagation models,” IEEE Trans.
Wireless Commun., vol. 13, no. 11, pp. 5999–6006, Nov. 2014.

[32] J. Yang, X. Wang, S. I. Park, and H. M. Kim, “Optimal direct path
detection for positioning with communication signals in indoor environ-
ments,” in Proc. IEEE Int. Conf. Commun. (ICC), Ottawa, ON, Canada,
Jun. 2012, pp. 4798–4802.

[33] P. Lazik, N. Rajagopal, O. Shih, B. Sinopoli, and A. Rowe, “ALPS:
A Bluetooth and ultrasound platform for mapping and localization,” in
Proc. 13th ACM Conf. Embedded Netw. Sensor Syst. (SenSys), 2015,
pp. 73–84.

[34] M. Mohammadi, A. Al-Fuqaha, M. Guizani, and J.-S. Oh,
“Semisupervised deep reinforcement learning in support of IoT and
smart city services,” IEEE Internet Things J., vol. 5, no. 2, pp. 624–635,
Apr. 2018.

[35] W. Zhang, K. Liu, W. Zhang, Y. Zhang, and J. Gu, “Deep neural
networks for wireless localization in indoor and outdoor environments,”
Neurocomputing, vol. 194, pp. 279–287, Jun. 2016.

http://dx.doi.org/10.1109/ICC.2019.8761294

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

