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Abstract—Bluetooth Low Energy (BLE) beacon is a key-
enabler for smart interaction between the user device and
the physical thing, in which the physical thing can actively
engage users for interaction via its advertising packet. However,
reliability is always an issue for beacon-based interaction since
the beacon employs an unreliable broadcasting approach which
provides no way to check if the user device has received the
correct packet. We define sparse observation to describe the
phenomenon where the number of packets received by the
user device within an arbitrarily small time duration is less
than the number of deployed beacons. This paper studies the
sparse observation causing by the following two factors: 1) the
unpredictable environmental variations, and 2) the uncontrollable
operating conditions of a beacon. An analysis is provided to
investigate the interaction reliability in connection with the above
two factors. Motivated by the above challenges, a novel solution,
which exploits the ambient RF fingerprinting to address the
sparse observation issues, is proposed to enhance the interaction
reliability. Our proposed solution is validated with extensive
experiments consisting of real data collected from both indoor
and outdoor environments. Lastly, the feasibility of our proposed
solution is demonstrated with a proof-of-concept prototype im-
plemented over multiple physical things.

Index Terms—BLE beacon, Reliability, Smart Interaction

I. INTRODUCTION

WHILE there is a constant growth in the Internet of
Things (IoT) related research, the current smart thing

still fail to have a good interaction with a human. Over the past
few decades, various technologies (e.g., QR code [1], RFID
[2], [3], [4], etc) were adopted to enable the physical thing
to communicate with user devices (e.g., smartphone, smart
wearable, etc). However, most of these technologies require
the users to initiate the interaction. Take the example of a
sculpture attached with an RFID tag, the users need to be
told explicitly that they need to scan the RFID tag with their
smartphone prior to further interaction. Chances are users
might miss the opportunity to interact with the sculpture of
their interest if they were unaware of the possible interaction
modalities. A smart interaction, on the other hand, should
not just wait for the user to take the initiative. In this paper,
we explore the promising feature of Bluetooth Low Energy
(BLE) beacon towards the realization of a smart interaction
and discuss the reliability issue with beacon-based interaction
before presenting our novel solution.
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A. Background and Motivation

The emergence of BLE beacon has created a new paradigm
of interaction with the physical thing [5] [6]. Specifically, the
active advertising feature of BLE beacon is capable of notify-
ing the user devices as users approaching. Such a promising
feature has witnessed an exponential adoption of BLE beacon
for a wide variety of applications especially in promoting the
proximity marketing [7]. By attaching a beacon to a physical
thing, the thing can broadcast their presence to the surrounding
via the advertising packet. Upon receiving the advertising
packet, the user device can access the associated content by
matching the identifier encapsulated inside the packet with the
list of identifiers in the online lookup table. The user device
might unable to interact with the physical thing if it could not
observe the packet broadcast by the attached beacon.

The broadcasting approach of BLE beacon is unreliable
as there is no way to check if the advertising packet had
reached the user device. Many applications simply shorten the
advertising interval such that the beacon can broadcast as many
packets as possible with a hope that one of the packets can
somehow reach the user device within a very short time. How-
ever, these applications only consider if their own beacon can
successfully deliver the packet and did not take the real-world
scenarios, which involve many beacons, into consideration. In
this paper, we define the sparse observation as a phenomenon
where the number of unique packets observed by the user
device within an arbitrarily small time duration is less than
the number of beacons in a given space. So far, there is no
work study the possible factors causing the sparse observation.
This paper provides a reliability analysis by investigating the
packet loss owing to (1) the environmental variations and (2)
the operating condition of a beacon.

B. Contributions

This paper introduces the notion of thing of interest (ToI)
to define the physical thing attached with a beacon. Fig. 1
provides four examples of ToI: (a) the ToI carries some
information about the promotional items which might of
interest to the shoppers1; (b) the ToI tells the visitors some
interesting stories regarding the sculpture2; (c) the ToI provides

1Tesco launches biggest iBeacon trial with Magnum campaign,
”https://www.marketingweek.com/2015/06/12/tesco-launches-biggest-
ibeacon-trial-with-magnum-campaign/”

2TED Baker Brings Mannequins To Life with Beacon Technology,
”http://www.ibeacontrends.com/ted-baker-beacon-mannequins/”
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Fig. 1. BLE beacons have been widely adopted by many industries: (a) retail
store, (b) art exhibit, (c) airport, and (d) garden.

the route information to direct the travelers inside an airport3;
and (d) the ToI educates the curious people about the species
of the plantation4. All the applications above can be realized
by simply associating the tiny beacon without modifying the
existing infrastructure.

Even though there are a number of works provide the
reliability model based on the packet loss rate [8] [9], there
is no work study the reliability of beacon-based interaction
which has a stringent requirement on accuracy and latency.
This paper describes a reliable interaction as the ability of the
ToI in delivering their advertising packet within a stringent
time requirement such that the user device can trigger a correct
interaction at the right time. However, it is almost impossible
for all the ToIs to successfully deliver their advertising packet,
resulting in a sparse observation at the user device. Hence, it
creates an open challenge, i.e., can the user device still trigger
a correct interaction under such a sparse observation?

Motivated by these challenges, this paper proposes a novel
solution, which exploits the ambient RF fingerprinting as the
ToI’s identifier and designs a sparsify differential evolution
(sDE) to search for the target ToI. The main contributions of
this paper are summarized as follows:
• Reliability analysis: we provide an analysis to study

the effect of (1) the environmental variations and (2) the
operating condition of a beacon, on delivering a reliable
smart interaction.

• Novel fingerprint solution: we exploit ambient RF
sources to fingerprinting the ToI. Such a fingerprinting
approach allows the user device to correctly identify the
ToI even under a sparse observation.

• Extensive Evaluation: the proposed solution is evaluated
with real data collected from both indoor and outdoor
environment, to better reflect the environment variations.

• Proof-of-concept Prototype: a prototype is built to
demonstrate the reliability of our proposed solution in
delivering a smart interaction with multiple ToIs, in which

3Travellers Want More Self-Service Tech In The Airport,
”http://www.webintravel.com/travellers-want-more-self-service-tech-in-
the-airport/”

4Internet Of Things Usability Testing At Kew Gardens,
”http://www.bunnyfoot.com/about/clients/internet-of-things-usability-testing-
at-kew-gardens2016”
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Fig. 2. Given the scarce advertising channels, the advertising packets can
access the channels successfully when there is no more than two packets
access the same channel the same time.
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Fig. 3. The user device can only receive the incoming advertising packet
when the user device scans on the same channel taken by the corresponding
beacon.

each ToI is attached with a beacon of different operating
conditions.

The rest of the paper is organized as follows. Section II
reviews the related works. Section III presents the interaction
model and provides analysis related to interaction reliability
Section IV formulates the problem, and then presents our
proposed sDE. Section V evaluates the performance of our
proposed solution in comparison to the baseline algorithms.
Section VI demonstrates the feasibility of our proposed solu-
tion with a prototype. Section VII concludes the paper.

II. RELATED WORKS

This section succinctly reviews the current technology re-
lated BLE beacon, before discussing the works that employ
beacons technology for interaction.

A. Bluetooth Low Energy Beacon

BLE beacon is a low power device that broadcast its adver-
tising packet periodically according to the pre-defined advertis-
ing interval [6]. The shorter the advertising interval, the more
the packet can be broadcast in 1s. However, simply increasing
the advertising interval cannot guarantee if the packet can
successfully reach the user device. On the other hand, it might
create unnecessary traffic and congested the scarce advertising
channels, as discussed by [10]. More specifically, referring
to BLE standard, there are only three channels (i.e., Channel
37, 38, and 39) allocated to handle the advertising events. As
illustrated in Fig. 2, when there is only one beacon broadcast
the packet at a given time, the packet can be transmitted
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successfully through any channel successfully. Case 2 and
3 provide further illustration with 3 beacons broadcast at
the same time. In case 2, all the packets can be transmitted
successfully through the channels if all the 3 beacons broadcast
on 3 different channels. In case 3, when there are 2 beacons
attempted to broadcast on the same channel, both packets
collide. In practice, it is very unlikely for any 2 beacons to
broadcast at the same time when there are only a few beacons
in the vicinity. However, the chances for any 2 beacons to
broadcast at the same time on the same channels increases
when the number of deployed beacons getting denser [11]. To
mitigate this problem, Bluetooth standard imposes a pseudo-
random delay ranging from 0 to 10µs on each advertising
interval. Hence, the previous 2 collided packets might be able
to get through the channel in the next advertising interval,
assuming both of them still transmitted on the same channel.

There are a lot of works exploit beacon for localization
problem [12]. For example, [13] uses radio fingerprinting to
locate the position of a smartphone; whereas [14] constructs a
robust 3D fingerprint by exploiting the autoencoder. Similarly,
none of these works consider the reliability issue involving
the interaction between the ToI and the user device. Another
critical parameter affecting the packet reception at the user
device is the scanning duration by the user device [15] [16].
The user device is able to listen to any incoming packet during
the scanning, which implies that the longer the scanning, the
more packets the user device could receive. However, the
number of packets a user device can receive is very much
subject to the scanning behavior. Bluetooth standard imposes
a sequential scanning behavior. More precisely, the user device
will scan on channel 37 for a certain duration within the
pre-defined scanning interval Ts, and then repeat the same
scanning on channel 38 at the next scanning interval, i.e. scan
on channel 38 at 2Ts, 39 at 3Ts, 37 at 4Ts, and so on.

Assuming there is a beacon broadcast the advertising packet
periodically on channel 37, then the user device cannot receive
the packet if its scanning duration falls in between the two sub-
sequent advertising intervals. If the scanning duration overlaps
with the time when the advertising packet is transmitted, then
we have the following two cases, as illustrated in Fig. 3. In
case 1, the user device cannot receive the packet because it
scans on the different channel then the channel taken by the
beacon. In case 2, the user device can successfully receive the
packet. Even though there are a number of works investigate
the relationship between the scanning duration and the latency
in discovering the neighboring beacons [17] [18], none of
these works disclose the latency issue related to interaction
which is far more complicated than merely neighbor discovery.
Furthermore, there is no work addresses the sparse observation
issue owing to the short scanning duration. Besides consider-
ing the various operating conditions of a beacon, this paper
also considers the worst-case scenario when the beacon stops
working.

B. Beacon-based Interaction

The advertising feature of BLE beacon is a key-enabler to
many novel interaction applications, especially in enabling the

ToIs, ℬ = {ToI1, ToI2, … , ToIN}
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Fig. 4. The interaction model consists of multiple ToIs and user devices. User
devices can access the content upon identifying the ToI.

ToI to actively engage users for interaction. In general, many
beacon-based interaction applications employ the proximity
approach to trigger the interaction [19]. For example, [20]
provides a beacon-based framework to invite the users to
interact with the art pieces through direct notification; whereas
[21] exploits the BLE technology for human-robot interaction.
The proximity approaches employed by the above applications
simply use the raw RSS values to trigger the interaction.
Specifically, they use a peak detection (PD) algorithm to
identify the interaction subject (i.e., the art pieces for the
application presented by [20] and the robot for [21]). While
PD is advantageous for its simple computation, it fails to
correctly identify the target ToI and eventually lead to a
wrong interaction when the user device encounters a sparse
observation.

While there exist more complicated algorithms to enhance
the accuracy in proximity detection, such as kNN by [22]
and CoSaMP by [23], they mainly focus on providing an
accurate detection without considering the issue with latency.
Lately, many works have started to exploit machine learning
approaches to tackle the issues related to RSS, such as
preprocessing the raw RSS data to learn a better fingerprint
representation [24], or using a reinforcement learning approach
to localize the user [25]. However, none of these works
study the reliability of using RF fingerprint for retrieving
the interactive service. Since many real-world applications
have massively deployed beacons for interactive applications
[26] [5], it is deemed important to study the reliability issue
involving the interaction between the ToI and the user device.

III. INTERACTION MODEL AND ANALYSIS

The beacon-based interaction model describes the input-
output relationship between multiple ToIs and user devices, as
illustrated in Fig. 4. As discussed, a ToI is capable of broad-
casting its advertising packet to the pre-defined advertising
interval Ta via its attached beacon. This packet contains the
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Fig. 5. The data was collected from two different environments: (a) Indoor , and (b) Outdoor environments.
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Fig. 6. (a) the beacon is built with the CC2541 chipset from Texas Instrument;
(b) Samsung and Asus smartphone are installed with our customized App for
data collection.

identifier of the ToI which can be used to access the content
stored in the server. Let set B be a list of ToIs, we have

B = {ToI1,ToI2, ...,ToIi, ...,ToIN} (1)

where N = |B| denotes the total number of ToIs.
User device performs packet acquisition via a background

scanning operation. The list of packets received during a
particular scanning interval Ts is stored in a temporary buffer.
We define an observation vector oy(td) = (id,Φ) ∈ RM×2 to
hold the unique list of packets observed during an arbitrarily
small time duration td ≤ Ts given the user device is in
proximity with ToIy . By unique list, we mean that oy(td)
consists of only one distinct packet from each ToI. The column
vector id ∈ RM contains a list of ToI’s identifiers; whereas
the column vector Φ ∈ RM indicates the list of average RSS
values. Note that M is usually smaller than or equal to N , in
which M = N indicates a complete observation. Let R(i)

r (t)
be the instantaneous RSS measured at time t for the ith ToI,
the average RSS φi ∈ Φ can be computed as follows:

φi =
1

a

∑
t≤td

R(i)
r (t), ∀i ∈ B (1)

where a is the total number of packets from ToIi.
A user device can automatically identify the target ToI

by inspecting the vector Φ. Identification is important to

an interactive application, that is, a smart interaction should
be able to automatically identify the target ToI rather than
having the user to indicate the target ToI he/she would like
to interact with. Mathematically, the identification process can
be described using a black box function f(·),

ŷ = f(oy(td)) = f(Φy) (2)

where ŷ is the index pointing to the target ToI. Note that
oy(td) is reduced to Φy for brevity. There are various methods
to deal with Eq. (2). The simple and intuitive method is by
searching the element which returns the strongest average
RSS. This method has been adopted by many commercial
applications despite its unreliability in connection with the
sparse observation, especially when M is far less than N .

A. Data Collection

This section presents the data collection methodology in
different environments before examining the effects of sparse
observation on the interaction reliability in Section III-B.
Fig. 5 (a) illustrates the indoor environment consisting of 4
ToIs: two bulletin boards, one directory signboard, and one
toilet signboard. Fig. 5 (b) illustrates the outdoor environment
consisting of 9 ToIs: 9 trees lined up along a pathway.
These ToIs were chosen for their potential in triggering a
serendipitous interaction.

The attached beacon is a tiny device built with the CC2541
chipset from Texas Instruments [27], as shown in 6(a). Ini-
tially, we configured the beacon to operate with Ta = 100ms.
Fig. 6(b) shows the 2 different Smartphones (i.e., Asus Zenfone
2 Deluxe ZE551ML and Samsung Galaxy Note 3) used to
collect the data. Both phones were installed with our data
collection App, which can automatically log the following
information: Mac Address, device name, advertising packet
payload, RSS value, and the packet receiving time. The logged
data were saved inside the local storage as a .csv file.

Two smartphones were placed at different locations close
to the target ToI before starting the App to collect the data.
The App is configured to scan for the incoming packet
continuously until at least 1000 data were collected. The same
collection steps were repeated for all the 13 ToIs, and for
Ta = 100ms to Ta = 1000ms with 200ms increment each
time. For each repeated process, we placed the smartphones
randomly selected locations as long as it is still in the
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proximity with the target ToI. Moreover, the data collection
was performed in an uncontrollable environment where there
were always people roaming around. About 130, 000 data were
collected in total. The data were then exported to the Matlab
for further analysis.

B. Reliability Analysis

Most of the related works [8] [9] merely investigate the
reliability in terms of packet loss rate and focus on the
applications related to wireless communication. However, this
paper focuses on the interactive applications which are mostly
latency-sensitive. Having said that, an interaction is also con-
sidered unreliable if the packet managed to reach to the user
device at a much later time. Accordingly, the interaction relia-
bility is defined as the ability to trigger the correct interaction
within a stringent time requirement. Sparse observation defines
the phenomenon when the size of the current observation
vector oy(td) is far smaller than the total number of ToIs
in set |B|, i.e., N < M . Note that sparse observation might
not necessarily cause an incorrect interaction, but might be
resulting in a high possibility of incorrect interaction. Let
O(t ≤ td) be the observation rate. Then we define the accuracy
of the identifying, (denoted as PA), as the probability of
successfully triggering a correct interaction upon identifying
the target ToI ŷ conditioned on the probability distribution of
the observation rate P (O(t ≤ td)), i.e.,

PA = P (Y = ŷ|O(t ≤ td)) (3)

where Y stands for the identifying result. Given Eq. (3), the
reliability can be expressed as follows:

R = P (1− PA < εmax) (4)

where εmax denotes the maximum tolerable error. Intuitively,
Eq. (4) implies the ability of the user device to produce a
high probability of accuracy despite the observation rate. The
observation rate O(t ≤ td) can be computed by dividing the
height of oy(t) (more specifically, the column’s size of idy or
Φy) with the size of set B, i.e.,

O(t) =
‖Φy(t)‖0
|B|

(5)

Both ‖ · ‖ and | · | return the cardinality of a vector and a set,
respectively.

Eq. (4) indicates that the interaction reliability is dependent
on the observation by the user device at time t. Obviously,
a correct interaction can be triggered with a high probability
when the user device has a complete observation, i.e., M = N .
However, the complete observation rarely happens in practical
scenarios owing to (1) the unpredictable environmental vari-
ations, and (2) the uncontrollable operating conditions of a
beacon.

1) Environmental Variations: Many works have concluded
that indoor environments exhibit severe environmental varia-
tions compared to outdoor environments owing to the shad-
owing and multipath effects [28] [29]. Hence, we compare the
observation rate between the indoor and outdoor environments
using the collected dataset. We varied td from 100ms to
5s and computed O(t ≤ td) using Eq. (5). Fig. 7(a) and
(b) indicate the corresponding probability distribution when
td = 100ms and 1s, for Ta = 100ms. It is clear that the user
device was having a lower observation rate (i.e., higher packet
loss) in the indoor environment than the outdoor environment.
The packet loss rate in the outdoor environment is less than
0.39 for at least 90% of the time, whereas the packet loss
rate in the indoor environment is up to 0.55, as shown in
Fig. 7(a). The packet loss rate reduces to 0.03 and 0.31 for
both outdoor and indoor environments when td is increased to
1s, as shown in Fig. 7(b). Fig. 7(c) summarizes and compares
the average observation rate O(t ≤ td) for Ta = 100ms and
Ta = 1000ms.

In general, O(t ≤ td) increases when td increases. More-
over, the user device can obtain a better observation when
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the beacon is configured to broadcast its packet every 100ms
as compared to 1s. Based on the above analysis, it is obvious
that the user device is able to trigger a correct interaction with
high probability in outdoor environments, which is subjected
to less environmental variations. Note that even though there
is a high guarantee on observation rate when td = 5s, the long
td, on the other hand, compromises the latency requirement
of an interaction.

2) Operating Conditions of BLE Beacons: Operating con-
ditions of a beacon are generally related to its energy level
of a beacon. We used the battery level to monitor the energy
level of a beacon. For all the beacons used in the experiment,
their battery levels were logged and group according to their
percentage. For every 1s, we counted the number of packets
received from the same ToI. That is, when the beacon is
configured to broadcast its packet with Ta = 200ms, the user
device should be expecting a total of 5 packets/s from that
beacon. More precisely, the frequency of the received packets
per ToI with respect to its advertising interval Ta, i.e.,

f (i)
r =

1

T
(i)
a

, ∀i ∈ B (6)

Note that fr is different from O(t ≤ td), yet fr has certain
level of influence on the O(t ≤ td). Specifically, when fr
from a beacon is low, say less than 0.2packets/second, then
the chances for the user device to observe the packet from
that beacon would be very low and eventually decreasing the
overall O(t ≤ td).

As illustrated in Fig. 8, when the battery level is full, the
number of same packets recorded by the user device per
second is closed to the expected fr. Meanwhile, fr drops
when the battery level of the beacon decreases. Specifically,
a severe drop is observed when the battery level is less than
25%. In practical cases, it is impossible to have all the beacons
operate with a nearly full battery level. On the other hand, each
beacon will suffer a certain level of battery drops from time
to time, and it is impractical to keep monitoring the battery
level to ensure the interaction reliability. However, being
able to provide a reliable interaction is of critical important
considering the exponential adoption of beacons for all kinds
of emerging interactive applications.

IV. TOI’S IDENTIFIER
WITH PROPOSED RF FINGERPRINT

This paper proposes an ambient RF fingerprinting to label
the ToI, rather than merely using the hardcoded identifier
encapsulated inside the advertising packet. In contrast to
the conventional RF fingerprinting which only consider the
homogeneous RF signal from a single source [30] [31], the
ToI is fingerprinted with the RSS harnessed from the attached
beacon as well as the beacons in its vicinity. Moreover, our ToI
fingerprint is dynamic and not confined to a specific physical
space as those location fingerprints presented by [13].

A. Fingerprint Construction
Let Ω ∈ RN×N be the fingerprint matrix, in which each

column represent a ToI’s fingerprint, i.e,

Ω =
(
Φ1 Φ2 · · · Φi · · · ΦN

)
(7)

ToIs, ℬ = {ToI1, ToI2, … , ToIN}

3

1

42

Φ1 =
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𝜙22
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𝜙14
𝜙24

𝜙34

𝜙44

𝜙14

Fig. 9. When a new ToI, say ToI4 is added, we only need to perform the
fingerprint registration on ToI4. Then we can use the φ14 measured at ToI4
to update φ41 for ToI1.

Fig. 10. (a) The distributions of φ14 when registering the fingerprint at
newly added ToI4. (b) The distributions of φ41 when repeating the fingerprint
registration at ToI1. It is clear that the KL divergence between 2 distribution
is very small.

where Φi ∈ RN is the fingerprint vector consisting of the
RSS values measured from all N ToIs by ith ToI, i.e., Φi =(
φ1i φ2i . . . φji . . . φNi

)T
. Each element φji can be

computed using Eq. (1), and φji is maximum when j = i. For
the purpose of fingerprint registration, it is always desirable to
repeat the scanning several times at several different locations
close to the ToI to obtain a better fingerprint. As a rule of
thumb, the time taken to register a fingerprint should be at
least 5s, but less than 1min.

Now, suppose that a new ToI is added, then B =
{ToI1,ToI2, ...,ToIi, ...,ToIN ,ToIN+1}, which indicates that
the size of Ω should be N+1×N+1. Definitely, the new ToI
would has a fingerprint vector of size N+1, but this is not the
case for the rest of N fingerprints in the database. Considering
the example illustrated in Fig. 9, we note that the newly
added ToI4 has a 4-dimensional fingerprint vector. However,
the existing fingerprint vectors registered in the database have
3 dimensions. It is relatively challenging, if possible, to append
the newly registered fingerprint vector into the existing Ω. One
possible solution is to repeat the fingerprint registration for all
the N ToIs, which can be labor intensive especially when N
is large.

Thank for the reciprocity theorem of a wireless communica-
tion link that is, if in a wireless communication link, the role of
the receive and transmit devices are functionally interchanged,
the transfer characteristics of the wireless channel remain
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unchanged. The theorem is further confirmed by observing
the distributions of φ14 and φ41, as illustrated in Fig. 9,
which behave very similarly and the similar results can also
be observed by other ToIs. Therefore, we argue that the
value of φ14 approximates that of φ41) from an average
sense. By leveraging the symmetrical property of the measured
RSSs from the above argument, the existing fingerprint matrix
Ω ∈ R3×3 can be updated to Ω ∈ R4×4 based on the
newly fingerprint vector Φ4 only without repeating the whole
fingerprint registration process for all the existing ToIs. More
generally, the fingerprint matrix in Eq. (7) can be updated to
the following:

Ω =
(
Φ1 · · · Φi · · · ΦN |ΦN+1

)

=



[ccccc|c]φ11 . . . φ1i . . . φ1N φ1(N+1)

... · · ·
... · · ·

...
...

φi1 . . . φii . . . φiN φi(N+1)

... · · ·
... · · ·

...
...

φN1 . . . φNi . . . φNN φN(N+1)

φ(N+1)1 . . . φ(N+1)i . . . φ(N+1)N φ(N+1)(N+1)


(8)

where φ1(N+1) ≈ φ(N+1)1, φi(N+1) ≈ φ(N+1)i, and so
on. Moreover, we implemented a customize beacon firmware
which allows the beacon to listen to the incoming packets
and update its fingerprint vector from time to time without
human intervention. The fingerprint registration and updating
process, in general, would not affect the on-going interaction
events taken place in the adjacent ToIs.

B. k-Sparse Problem Formulation

The relationship between Φy and fingerprint matrix Ω can
be described as follows:

Φy = Ωb + ∆ (9)

where b ∈ RN is the indication vector and ∆ ∈ RN is the
measurement noise. The indication vector b should be a 1-
sparse vector with all elements equal to 0 except the element
indicating the target ToI. However, it is almost impossible to
obtain a clean 1-sparse solution in practical scenarios. For
example, when the user device is in proximity with ToI700,
the indication vector should contain all elements equal to
zero except at the element equal to 700. Ideally, the 700th
element should equal to 1; however, we might obtain an
indication vector with k non-zero elements due to the presence
of noise and interferences. In this case, the 700th element
should contain the value higher than the rest of k−1 elements.
Hence, the problem is reduced to finding a k-sparse vector b
containing at least k non-zero elements, i.e.,

b̃ = arg min ‖b‖0 (10)

These k non-zero elements should sum up to 1; the element
with the highest value indicates the target ToI, and the rest
of k − 1 elements indicate the influence from adjacent ToIs.

Note that Eq. (10) introduces a NP-hard problem, which can
be relaxed to the following objective function:

b̃ = arg min ‖b‖0
s.t. ‖Φy −Ωb‖22 < ε

|b| ≤ 1

(11)

The above objective function can be solved by any optimiza-
tion algorithms, for example, the differential evolution (DE)
[32]. Nonetheless, Eq. (9)-(11) are only valid when the size of
Φy equals to the height of Ω, i.e., M = N . This might not be
the case consider the issue with sparse observation discussed in
Section III-B. More specifically, the problem is undertermined
when M << N . To address this problem, sDE extends the
existing DE by imposing a sparsify basis to transform the
N ×N matrix to M ×N matrix.

C. Sparsify Differential Evolution

As illustrated in Fig. 11, DE uses three processes (i.e.,
mutation, crossover, and selection) to iteratively search for the
optimum solution. In contrast to the conventional matching
pursuit algorithms, DE is capable of avoiding being trapped
in the local optimum via constant evolution [33] [34]. Such
a property is critical to an interactive application in which
the user might shift from interacting with current ToI to
another ToI. The random shifting from one ToI to another ToI
creates multiple optimum points within a short time interval.
However, DE could not be applied directly to Eq. (11) when
the observation vector Φy is sparse. For this reason, this
paper proposes sDE, a novel extension to the existing DE,
by imposing a sparsify basis during the selection process.
As illustrated in Fig. 12, sDE relates the sparse observation
Φy ∈ RM with Ωb ∈ RN via a sparsify basis Ψ ∈ RM×N .
Each element ψij indicates if the identifier of jth observation
(i.e., id(i)

y ) matches with the identifier pointed by ToIj ∈ B.

ψij = K(id(i)
y ,ToIj) (12)

where function K(·) returns 1 if the identifier matches. The
common function used by K(·) is by simply taking the modu-
lus between both variables. More sophisticated cryptographic
techniques can be adopted to obtain a more secure K(·).

Given the sparsify basis Ψ, the selection process of sDE is
defined as follows:

b(G+1)
ρ = arg min

u={α,ϑ}
(‖Φy −ΨΩbu‖22) (13)

where bα and bϑ are the possible solutions obtained through
the evolution processes; whereas b

(G+1)
ρ is the best solution

which can be proceeded to the next generation G. Initially,
three vectors (i.e., bα, bβ and bγ) are randomly initialized and
go through the mutation and crossover processes to produce
bϑ. During the mutation process, both vector bβ and bγ are
subtracted and multiplied with a mutation rate M, before
adding with bα to produce a donor vector bζ , i.e.,

b
(G)
ζ = b(G)

α +M(b
(G)
β − b(G)

γ ) (14)

The crossover process exchange the elements between bα
and bζ to produce the evolved vector bϑ. The exchange is

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 29,2020 at 01:05:49 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.2974230, IEEE Internet of
Things Journal

8

𝐛 𝜶
(𝑮)

𝐛 𝜷
(𝑮)

𝐛 𝜸
(𝑮)

𝐛 𝜻
(𝑮)

-
+ ℳ

෩𝐛 = 𝐛 𝝆

𝐛 𝝑
(𝑮)

Mutation Crossover Selection

𝚽𝒚 − 𝚿𝛀𝐛
𝟐

𝟐
< 𝛜

𝐛 𝝆
(𝑮+𝟏)

𝐛 𝜻
(𝑮)

𝐛 𝜶
(𝑮)

𝐺 ≥ 𝐺𝑡ℎ𝑟𝑒𝑠

𝐺 + +

Yes

No No

𝑐𝑖 = 1

𝑐𝑖+1 = 0

𝑐1 = 1

.

.

.

Fig. 11. sDE imposes a sparsify basis during the selection process in determining the current optimum solution from a pool of possible solutions produced
through the mutation and crossover processes.
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Fig. 12. The sparsify basis transform the N×N fingerprint matrix to M×N
to deal with the sparse observation.

governed by a crossover vector c, in which each element in c
is either 1 or 0 according to the C is the crossover rate, i.e.,

ci =

{
1, Ri(n) ≥ C
0, Ri(n) < C

, ∀ci ∈ c (15)

where R(·) is the random number generator. Intuitively, bϑ
inherits the element from bζ when ci = 1; otherwise, bϑ
inherits the element from bα. Mathematically, bϑ obtained at
current generation G can be expressed as follows:

b
(G)
ϑ = cTb

(G)
ζ + c′

T
b(G)
α (16)

where c′ is the complement to c.
The same selection process is repeated by comparing b

(G)
ϑ

with the best solution obtained from previous generation
b

(G)
α = b

(G−1)
ρ . The process of sDE would halt when either

one of the following conditions, i.e., bρ < ε or G > Gthres,
are met. Then, b̃ would be the the current best bρ. Based
on b̃, the target ToI can be selected as well as retrieving the
corresponding identifier for interaction.

V. EXPERIMENTS AND RESULTS

In this section, we first validate the optimum mutation rate
M and the crossover rate C required by sDE before further
with extensive experiments to evaluate the performance of
sDE in comparison to three carefully selected algorithms. The
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Fig. 13. The accuracy given different combinations of mutation and crossover
rate.

experiments were performed with the same dataset collected
from both indoor and outdoor environments. Section V-B
presents the three selected algorithms, the corresponding re-
sults are discussed in Section V-C.

A. Mutation and Crossover Rates

Both M and C are the two design parameters required by
sDE during the mutation and crossover process, as described
in Eq. (14)-Eq. (16). In general, it is recommended to have
M = (0, 2] and C = (0, 1]. Detail exploration regarding the
various configurations of M and C over various benchmark
functions are available in [32]. In this paper, we validate the
configurations of M and C using our real dataset. We ran the
experiment by setting td = 100ms and 1000ms. From Fig. 13,
it was observed that the accuracy increases when M and C
increase. However, it might not be a wise choice to use high
M and C, which might easily lead to overfitting and fail to
generalize for other related problems. Furthermore, a highM
can cause a frequent mutation which increases the algorithm
runtime. On the other hand, high C means that the evolve
vector would always inherit the element from the current best
solution which might cause the solution to trap at the local
optimum. Hence, we opt to set M = 0.5 and C = 0.6 in the
light of the results obtained in Fig. 13.
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B. Baseline Algorithms

Three algorithms are selected as the baseline, i.e., PD, kNN,
and CoSaMP. Among them, PD has been widely adopted
by the industrials, whereas kNN and CoSaMP have been
exploited by related academia research.
• PD is a simple algorithm provided by most beacon

manufacturers to escalate the development process [35].
Usually, PD selects the target ToI by selecting the element
in Φy which returns the strongest RSS measurement.

ỹ = arg max
i∈Φy

Φy (17)

where ỹ is the pointer to the target ToI.
• kNN has been used by many fingerprinting related works.

In [22], an artificial RSS value (typically −100dBm)
is introduced to fill in the missing entries, i.e., φi,y =
{−100 : i ∈ b∨φi,y = ∅}, before applying kNN to select
the target ToI. In general, kNN computes the Euclidean
distance to locate the fingerprint which has the smallest
distance to Φy , i.e.,

ỹ = arg min
∀Φi∈Ω

‖Φy − Φi‖22 (18)

• CoSaMP is widely used in dealing with compressive
sensing problem [36], and it also has been used to
tackle the sparse issue related to proximity fingerprint
[37]. Mathematically, CoSaMP transforms ΨΦ into an
orthonormal basis Q = orth(ΨΦ)T , and then use a signal
pre-processing operator T = Q(ΨΦ)† to transform Φy to
Φ′y = TΦy . before estimating the ToI indication vector
b̂.

b̂ = arg min
b

(‖Φ′y −Qb‖2 + λ‖b‖1) (19)

Based on the resultant b̂, ỹ can be found by taking the
entry which contributes the highest value.

C. Results

Two metrics are used to evaluate the performance of the
above three algorithms in comparison to our proposed sDE.
Accuracy is computed by taking the ratio of the number of
correct interaction to the total number of interactions which
have been triggered; whereas, the reliability is evaluated using
Eq. (4), which implies that the reliability is the ability to trigger
the correct interactions within an arbitrarily short time duration
td under a certain tolerable error.

1) Accuracy and Reliability: Fig. 14 shows the accuracies
achieved by all the four algorithms with respect to td, for Ta =
100ms, 400ms, 600ms, and 1000ms. Given Ta = 100ms, PD
and kNN have a very low accuracy (below 40%) when td =
10ms; whereas CoSaMP achieves 43.90% and sDE 57.35%.
Even though the chances to observe a packet in such a short
td (i.e., 10ms) is relatively low, our proposed sDE is still able
to achieve above average accuracy. In general, sDE achieves
81.91% accuracy when td increases to 40ms, and 100% when
td = 400ms. Note that most of the interactive applications
can accept latency up to 400ms, hence, the results indicate
the capability of sDE in guaranteeing a real-time interaction
with 100% accuracy.

However, a short Ta is generally not the preferable choice
consider the battery lifespan of a beacon. Hence, we also ver-
ified the performance of all the four algorithms with different
Ta. It is clear that all the four algorithms suffer performance
degradation when Ta increases. Given td = 400ms, our sDE
still can maintain a decent performance. In particular, sDE
achieves 89.97% accuracy when Ta = 200ms, 86.12% when
Ta = 400ms, 82.80% when Ta = 600ms, 75.91% when
Ta = 800ms and 74.65% when Ta = 1000ms. According
to the specifications provided by the beacon’s manufacturer,
the beacon can last for at least 2 years when Ta = 800ms.
From the results shown in Fig. 14, we are well-assured that
our proposed solution can achieve more than 80% accuracy
when Ta = 600ms, which also allow the beacon to last for
more than 1 year.

Fig. 15 illustrates the relationship between the reliability
and the accuracy, given td = 100ms, 400ms, and 1000ms.
Obviously, the reliability decreases when td decreases, and in-
creases when td increases to 1000ms. Refer back to Fig. 7(c),
it is clear that the observation rate increases when td =
1000ms. Given the high observation rate, most of the algo-
rithms produce 0% error with high reliability. In other words,
sDE, CoSaMP, PD and kNN are guaranteed to produce 100%
accuracy for at least 70.32%, 59.43%, 42.70% and 35.92%,
respectively, when td = 1000ms. However, to cater for the
latency requirement of interaction, it is advisable to keep td
to 400ms and below. When td = 400ms, the reliability of
many algorithms drop, as shown in Fig. 15(b). Among these
algorithms, our proposed sDE is reliable, in which sDE is able
to guarantee at least 80% accuracy for 83.41% of the time
when td = 400ms, i.e., R = P (1−PA ≤ 0.2|td = 400ms) =
0.8341.

2) Implications of Algorithm’s Runtime: We measured the
runtime in a normal computer with a single core processor
Intel Core i5-8265U 1.6GHz and 12GB RAM. For quick
verification, we implemented all the algorithms in MATLAB
and used the collected data for experiment. The runtime
measurement presented in Fig. 13 is based on the result ob-
tained through MATLAB. For the practical demonstration, the
algorithms were implemented directly on the smartphone in C
(using the Xamarin framework for mobile app development).
Nowadays the modern smartphones are powerful enough to
execute all these algorithms. From the results illustrated in
Fig. 14 and Fig. 15, it is obvious that sDE achieves a
superior performance than the rest of the three algorithms.
Nonetheless, the performance of CoSaMP is comparable with
sDE especially when td and Ta increase, and thus increase
the observation rate. However, CoSaMP is generally having a
more complex algorithm which requires longer runtime than
sDE; whereas PD is simple and straightforward. Note that
we have been discussing that td = 400ms is acceptable for
latency-sensitive applications which involve frequent interac-
tions; however, this 400ms simply indicates that the time used
by the packet acquisitions, and does not take the algorithm
runtime into consideration.

Fig. 16 indicates the runtime of all the 4 algorithms with
respect to the data size. Two graphs are used to plot the runtime
because both kNN and PD are definitely having a much lower
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Fig. 14. Average accuracies achieved by the four algorithms with respect to td when (a) Ta = 100ms, (b) Ta = 400ms, (c) Ta = 600ms, and (d)
Ta = 1000ms
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0 20 40 60 80
0

0.01

0.02

0.03

0.04

0.05

0.06
kNN
PD

0 20 40 60 80
0

2

4

6

8

10

sDE
CoSaMP

Fig. 16. The algorithms’ runtime with respect to the data size.

runtime than CoSaMP and sDE, which might unclear when
putting all the four algorithms in one graph. The data size
simply means the total number of packets the user device
received during td, which is different from the observation
rate, as discussed in Section III-B2. Obviously, PD is having
the fastest runtime compared to the rest, i.e., in average 9.64ps.
The runtime of CoSaMP increases abruptly when the data
size grows from 0 to 10, whereas sDE has almost consistent
runtime (i.e., about 2.148µs in average) despite the growing
data size. Since the worst-case runtime is still in the unit of
µs, it is obvious that none of the algorithm’s runtime has a
significant impact on the total latency. Hence, the impact of
the algorithm’s runtime is negligible for all the cases.

VI. PROOF-OF-CONCEPT PROTOTYPE

A proof-of-concept prototype is built and tested in a prac-
tical testing to demonstrate the feasibility of our proposed
sDE for real-world interactive applications. The prototype is a

complete system consists of an online server, smartphones, and
ToIs. Fig. 17(a) indicates the seven ToIs. Each ToI is attached
with a working beacon with Ta = 600ms. An Android-
based application which is capable of performing fingerprint
registration and ToI identification is developed and installed
into the smartphones. When a ToI is added, we can use the App
to register its fingerprints and the registered fingerprint would
be uploaded and stored in a fingerprint database. Fig. 17(b)
shows that a unique ID would be assigned automatically upon
a successful registration. Fig. 17(c) shows the list of registered
fingerprints, these fingerprints would be exported to Matlab to
construct the fingerprint matrix.

The user can interact with the ToI when the user device
successfully retrieves its identifier, i.e., the fingerprint in our
context. The packets obtained through the real-time scanning
would be streamed to the Matlab through TCP/IP socket. All
the four algorithms are implemented in the Matlab. The final
results obtained by these four algorithms would then return
to the smartphone through the same socket communication.
Each ToI can speak automatically to the user through the
smartphone when the user device approaches the ToI. We used
the Android Text-to-Speech (TTS) API to achieve the above
purpose. Using the smartphone microphone, the user can also
speak to the ToI.

A. Implications of the Battery Conditions

In this experiment, we tested each ToI for at least 25 times.
The interaction response was marked incorrect when (1) the
user device fails to output the correct ToI, or (2) the user
device only outputs the correct ToI by the time the user device
has already moved away. In the first experiment, we inserted a
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Fig. 17. (a) A total of 7 ToIs are implemented. (b) The process of fingerprint registration when a ToI is added. (c) The registered fingerprint is uploaded and
stored in an online server, based on MySQL framework.
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Fig. 18. The accuracy achieved by all the four algorithms when (a) all beacons
were with fully working battery, (b) some batteries were dead.

new battery to each attached beacon and manually checked the
working condition to ensure all the beacons are fully working.
The result is shown in Fig. 18(a). In general, sDE achieves a
decent performance with average accuracy of 98.85%, follows
by CoSaMP 93.14%, PD 88% and kNN 78.28%. In the second
experiment, we purposely took out the battery in some beacons
to emulate a worst-case scenario with died battery. The death
ratio is computed by dividing the number of beacons with a
dead battery by the total number of ToIs. Similar steps were
performed for each death ratio, and the result is illustrated in
Fig. 18(b) Again, our proposed sDE outperforms the rest with
a very reliable performance, i.e., sDE achieves more than 80%
accuracy even though more than 50% of the beacons were with
a dead battery.

B. Real-time Performance

Since the interaction involves a socket communication con-
necting the user device and the server, it is of critical impor-
tance to examine the end-to-end latency. In this experiment,
we manually adjust td and wait patiently until the user device
returns with correct interaction. By correct interaction, we
mean the ability of user device to respond to the user with
the necessary multimedia content (e.g., the speech or the
image) when the user is in the proximity of the ToI. The
App is programmed to output the time elapsed from scanning,
communicating with the server to transmitting content. Hence,
we can jot down the time precisely up to ms. If the algorithm
returned a correct interaction response, we will reduce td;
otherwise, we will increase td until it is able to return a correct

TABLE I
AVERAGE RESPONSE TIME REQUIRED BY EACH IMPLEMENTED

ALGORITHM TO RETURN A CORRECT IDENTIFICATION.

Algorithm PD kNN CoSaMP sDE

ToI 1 1200ms 1550ms 800ms 402ms
ToI 2 1350ms 1670ms 870ms 400ms
ToI 3 1220ms 1770ms 990ms 403ms
ToI 4 1250ms 1650ms 950ms 400ms
ToI 5 1310ms 1670ms 930ms 400ms
ToI 6 1220ms 1720ms 890ms 403ms
ToI 7 1300ms 1750ms 900ms 403ms

Average 1264.3ms 1682.9ms 904.29ms 401.57ms

response. Same procedures were repeated for ten times, and
the results are presented in Table I. Again, sDE is able to return
correct interaction response within 400ms, which aligned to
the results discussed in Section V-C1.

VII. CONCLUSIONS

While there is an exponential adoption of beacon for
commercial interactive applications, there is no work, so far,
investigate the issue related to interaction reliability. This
paper studies the smart interaction between the user device
and ToI, highlight the research challenges and presents our
proposed solution to enhance the interaction reliability. This
is the first work that provides a thorough analysis regarding the
possible challenges in connection with interaction reliability.
Most importantly, as the adoption of beacon continues to
grow, this paper takes a step forward to provide a solution
which can guarantee the reliability despite the environmental
variations and the beacon’s operating conditions. For future
work, we can incorporate machine learning method to train a
ToI classification method (to first classify the ToI according
to varying environment) directly on smartphone (Note that the
has been a lot of efficient machine learning algorithms for on-
device training, for example, tensorflow lite) before applying
the sDE for further identification.
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